Assimilation of GPS Radio-Occultations at DWD

Harald Anlauf

Research and Development, Data Assimilation Section
Deutscher Wetterdienst, Offenbach, Germany

IROWG 2nd Workshop, Estes Park (Colorado, USA)
28. March 2012
NWP Models at DWD

GME
Global model, hydrostatic
Triangular grid, mesh size: 20 km
60 levels (top: 5 hPa)
(1474562×60 grid points)
Forecast times:
174h from 00Z, 12Z;
48h from 06Z, 18Z

COSMO-EU
Non-hydrostatic
Mesh size: 7 km
40 levels
Forecast times:
78h from 00Z, 12Z;
48h from 06Z, 18Z

COSMO-DE
Non-hydrostatic, “convection allowing”
Mesh size: 2.8 km
50 levels
Forecast times:
21h from 00Z, 03Z, . . . , 21Z

COSMO-DE-EPS
(Pre-operational)
Ensemble prediction system
20 ensemble members
(operationally: 40 members)
Forecast times:
21h from 00Z, 03Z, . . . , 21Z
Global Data Assimilation System at DWD

- **3D-Var-PSAS**, 3-hourly update cycle
- **Available Forward models for GPSRO**
 - 1d bending angle operator (Implementation by Michael Gorbunov); fixed/effective tangent point for profile or individual tangent point
 - 3d ray tracer (Michael Gorbunov)
- Implementations tested and evaluated in collaboration with GFZ using data from CHAMP and GRACE (Pingel and Rhodin, 2009)
 - Ray tracer: best in terms of std.dev. of OBS-FG, numerically expensive! Ray tracer also needs additional data not provided in BUFR messages (satellite positions and velocities)
 - 1d-operator (Abel integral) with effective location of occultation probably good enough for initial operational implementation (still needed major optimization efforts for the NEC SX-9)
- **Refractivity**
 3-term expression as recommended by GRAS-SAF
- **“Initialization”**
 MSIS-90 climatology matched at model top (∼ 36 km)
Assimilation of GPS Radio-Occultations

- **Observation errors** (S. Healy):
 - Linear decrease from 10% to 1% for impact height from 0 to 10 km
 - 1% from 10 km to 30 km

- **Quality control** of observations:
 - Consistency checks of profiles
 - Observation-minus-first guess check: 4σ (should be made stricter)
 - B.a. < 0.02 rad to avoid ducting (replace by condition on refractivity)
 - Clip lowest section of GPS-RO profiles when non-monotonous

- **Vertical thinning** to model resolution, exponential smoothing

- Use **impact heights** 3 km–30 km

- Exclude occultations starting above 20 km

- **GPS Radio-Occultations operationally used since 2010-08-03**
 - COSMIC/FORMOSAT-3 FM 1-2, 4-6 (FM-3 dead since 2010-08-01)
 - GRACE-A
 - GRAS on METOP-A
 - TerraSAR-X (since 2010-12-09)
 - C/NOFS, SAC-C (since 2012-02-29)
Impact of the Assimilation of GPSRO

- Better fit to radiosondes in upper troposphere/lower stratosphere, esp. southern hemisphere (but mixed results in Antarctic)
- Significant forecast improvements with assimilation of GPSRO

Anomaly Correlation of Geopotential 500 hPa, Southern Hemisphere for July 2010 ⇒ gain of several hours vs. operational system

H. Anlauf et al., Atmos. Meas. Tech., 4, 1105–1113
Comparison to Radiosondes

- Mean departures of temperature and rel. humidity observations from radiosondes to 3-h forecasts, Southern Hemisphere

(blue: ctrl (operational), red: GPSRO experiment)
Problems with the Assimilation of GPSRO over Antarctic

Statistics for Temperature from RS

Statistics for Temperature from RS

EXP=rou

EXP=roup

OBS minus FG/AN for: Surface=all Flag=used SatId= 5

OBS minus FG/AN for: Surface=all Flag=used SatId= 5

Time period = 20100615 00UTC - 20100704 21UTC, STEP=3h

Time period = 20100615 00UTC - 20100704 21UTC, STEP=3h

- Large temperature bias, got even worse with assimilation of GPSRO!
- Partially understood: poor representation of vertical correlations in operational assimilation system, revised in December 2010
- Some issues with the forecast model, but investigations ongoing
Issues with Assimilation of GPSRO Data (I)

- Bias, RMS differences for different satellites (processing, model, . . .)
- Lower troposphere: largest bias in the tropics, smaller in extratropics

Statistics for Bending Angles from METOP / GPS RO
EXP=rou
Statistics for Bending Angles from COSMIC / GPS RO
EXP=rou
OBS minus FG/AN for: Surface=all Flag=used SatId= 4
OBS minus FG/AN for: Surface=all Flag=used SatId= 740
Time period = 20110101 00UTC - 20110831 21UTC, STEP=3h
Time period = 20110101 00UTC - 20110831 21UTC, STEP=3h

Tropics
Issues with Assimilation of GPSRO Data (I)

- Bias, RMS differences for different satellites (processing, model, . . .)
- Lower troposphere: largest bias in the tropics, smaller in extratropics

Statistics for Bending Angles from METOP / GPS RO EXP=rou
Statistics for Bending Angles from COSMIC / GPS RO EXP=rou
OBS minus FG/AN for: Surface=all Flag=used SatId= 4
OBS minus FG/AN for: Surface=all Flag=used SatId= 740
Time period = 20110101 00UTC - 20110831 21UTC, STEP=3h
Time period = 20110101 00UTC - 20110831 21UTC, STEP=3h

Harald Anlauf (DWD)
Assimilation of GPSRO at DWD
28. March 2012
Issues with Assimilation of GPSRO Data (II)

- Apparent positive bias for non-GRAS data due to bugs in *first-guess check implementation* (non-symmetric w.r.t. OBS and FG!)
- Current GRAS data are (known to be) biased below ~ 8 km
 - Rising occultations (globally)
 - Setting occultations (notably tropics, lower troposphere)
Issues with Assimilation of GPSRO Data (II)

- Apparent positive bias for non-GRAS data due to bugs in first-guess check implementation (non-symmetric w.r.t. OBS and FG!)
- Current GRAS data are (known to be) biased below ~ 8 km
 - Rising occultations (globally)
 - Setting occultations (notably tropics, lower troposphere)

GRAS, $30^\circ S$–$30^\circ N$, 3-4 km
Issues with Assimilation of GPSRO Data (II)

- Apparent positive bias for non-GRAS data due to bugs in *first-guess check implementation* (non-symmetric w.r.t. OBS and FG!)
- Current GRAS data are (known to be) biased below \(\sim 8 \text{ km} \)
 - Rising occultations (globally)
 - Setting occultations (notably tropics, lower troposphere)

3dvar monitoring

Bending Angle [radian]

Level Max/Min: 6938.00 / 6090.30

Date: 2011070100 - 2011073121

GRAS, 30°S–30°N, 6-7 km
Issues with Assimilation of GPSRO Data (II)

- Apparent positive bias for non-GRAS data due to bugs in first-guess check implementation (non-symmetric w.r.t. OBS and FG!)
- Current GRAS data are (known to be) biased below ~ 8 km
 - Rising occultations (globally)
 - Setting occultations (notably tropics, lower troposphere)

Bias might be tolerable for small bending angles ($\lesssim 15$ mrad)
Issues with Assimilation of GPSRO Data (III)

- Occasionally poor convergence of the 3D-Var
 - Forward operator was evaluated outside domain of validity, e.g.
 - $\frac{d(r \cdot n(r))}{dr} < 0$ for some r, or
 - rays were extrapolated below model orography (mostly Antarctic) in line-search during minimization
 - Extend forward operator and first-guess checks (not yet operational)
 - minimum geometric height of rays above orography (1 km)
 - require $\frac{d(r \cdot n(r))}{dr} > 0.5$
 - Enhance optimization algorithm to enable detection and removal of bad rays during minimization
 - Variational Quality Control (VQC) scheme initially used for surface pressure observations (Gaussian+Flat) while using an approximate (modified) Huber-function for the other observations didn’t work well
Variational Quality Control

- In variational assimilation schemes, VQC enables dealing with bad observations during minimization
 - Observational cost function for Gaussian error distribution (p)
 \[J_o(y - \mathcal{H}(x)) = -\log(p(y - \mathcal{H}(x))) = \frac{1}{2}(y - \mathcal{H}(x))^T R^{-1}(y - \mathcal{H}(x)) \]
 \[\Rightarrow \text{Pull of outliers same as for good observations} \]
 - Gaussian+Flat: large outliers have zero impact, but strong non-linearities, possible multiple minima, slow convergence
 - ‘Huber norm’ (ECMWF): quadratic/linear for small/large departures; outliers have small impact, but better convergence, no multiple minima
 - **Approximate (modified) Huber-function**
 \[J_{qc} \sim \alpha \cdot \left(\sqrt{\frac{x^2}{\beta}} + 1 - 1 \right), \quad \text{with parameters} \quad \alpha, \beta = \beta(R, \ldots) \]
 \[\Rightarrow \text{Similar to Huber norm, but smooth gradient, 2nd derivative} \]

We now use the approximate (modified) Huber-function approach for all observations.
Results from revised first-guess checks and QC

- Bias for lower troposphere reduced, more rays used (except GRAS)
- Example: TerraSAR-X (blue: control, red: experiment)

Statistics for Bending Angles from TerraSar / GPS RO EXP=8565
Statistics for Bending Angles from TerraSar / GPS RO EXP=8670
OBS minus FG/AN for: Surface=all Flag=used SatId= 42
OBS minus FG/AN for: Surface=all Flag=used SatId= 42
Time period = 20110701 00UTC - 20110731 21UTC, STEP=3h
Time period = 20110701 00UTC - 20110731 21UTC, STEP=3h

(blue: ctrl, red: experiment)
Results from revised first-guess checks and QC

- Bias for lower troposphere reduced, more rays used (except GRAS)
- Example: GRAS (blue: control, red: experiment)

Statistics for Bending Angles from METOP / GPS RO EXP=8565
Statistics for Bending Angles from METOP / GPS RO EXP=8670
 OBS minus FG/AN for: Surface=all Flag=used SatId= 4
 OBS minus FG/AN for: Surface=all Flag=used SatId= 4
 Time period = 20110701 00UTC - 20110731 21UTC, STEP=3h
 Time period = 20110701 00UTC - 20110731 21UTC, STEP=3h

(blue: ctrl, red: experiment)
Comparison to Radiosondes

- Mean departures of T, rH obs. to 3-h forecasts, Southern Hemisphere

(Images of graphs showing bias and RMS error of temperature and relative humidity at different pressure levels)
Summary and Outlook

GPS Radio-Occultations are a useful component of the global observing system for Numerical Weather Prediction at DWD

- Improved analyses and forecasts in particular in data-sparse regions
- Improved stability of (static) bias correction for satellite radiances
- Exhibit deficiencies in the data assimilation (e.g. background error model)
- Help locating forecast model deficiencies
- Strong non-linearity of forward operator poses challenges for quality control in data assimilation

Future developments

- Optimize and test impact of forward operator with tangent point drift
- Implement ROPP 2d forward operator
- Evaluate options to re-activate 3d ray tracer (needs satellite positions and velocities missing in BUFR!)
Summary and Outlook

- GPS Radio-Occultations are a useful component of the global observing system for Numerical Weather Prediction at DWD
 - Improved analyses and forecasts in particular in data-sparse regions
 - Improved stability of (static) bias correction for satellite radiances
 - Exhibit deficiencies in the data assimilation (e.g. background error model)
 - Help locating forecast model deficiencies
 - Strong non-linearity of forward operator poses challenges for quality control in data assimilation

- Future developments
 - Optimize and test impact of forward operator with tangent point drift
 - Implement ROPP 2d forward operator
 - Evaluate options to re-activate 3d ray tracer (needs satellite positions and velocities missing in BUFR!)

A big Thank You to all involved in making data available in Near Real-Time!