Equatorial and Low Latitude Scintillation Initiated From Low Altitude Forcing via Hurricanes/Typhoons

Dr. Rebecca Bishop

The Aerospace Corporation

PSL/SSAL
30 March 2012
Outline

• Background: Evidence of Hurricane/Typhoon effects on the Ionosphere
• Theory of Low Altitude Coupling to the Ionosphere
• GPS data
• Observations of scintillation correlated with storms
• Summary
Evidence of Low Altitude Forcing on the Ionosphere.

Hurricanes, Typhoons, Tropical Storms

- Bauer [1958] study
 - *F-peak density increased associated with nearby passage*
- Hurricane Eloise, 1975
 - *Observed wave-like fluctuations at F region altitudes with horizontal wavelengths on order of 100 km.* [Hung and Kao, 1978]
- Hurricane Dennis, Hurricane Floyd, 1999
 - *Night following B-field crossing MSF observed by WFF ionosonde.*
- T.S. Odette, 2003
 - *ISR, ionosonde, GPS occultation, microbarometer data obtained during close passage of storm to Puerto Rico.*
 - *Large, anomalous F-region plasma drifts observed [Bishop.*
- Other Storms:
 - *Variations in F-peak density, altitude preceding and following storm observed by ionosondes.*
Dynamical Coupling

The Picture So Far…

• Gravity waves generated at tropospheric altitudes propagate to the F-region
• Gravity waves generated from storms break near 100 km and produce secondary waves that continue to propagate upward
• Gravity waves modulate the E-region plasma producing polarization fields that map to F-region altitudes.

F-region Disturbances:
* Large Plasma Drifts
* Scintillation
* Density Irregularities

1. 2. 3.

Courtesy of NOAA
Dynamical Coupling: Gravity Wave Theory

- Strong convection cells produce a wide spectrum of gravity waves
- Gravity waves increase in amplitude with increasing altitude and may become unstable
- Only waves propagating at the certain angles and with the correct amplitude can reach thermospheric altitudes
- Once in the thermosphere, only those waves oriented to the magnetic field in a particular manner may produce ionospheric disturbances
Dynamical Coupling: Gravity Wave

Model Results

- Efforts by Vadas et al. have shown gravity waves from convection cells (thunderstorms) capable of reaching the lower F-region.
- Depending on the background wind field, gravity waves may penetrate to 300 km altitude.

Courtesy of S. Vadas
PicoSat Mission

IOX sensor

- Launched September 30, 2001 on Athena-1 rocket
- Orbit: 67 inclination, 800 km altitude
- Precesses through all local times in ~50 days
- Four Science instruments on-board
- GPS Instrument: Ionospheric Occultation Experiment (IOX)
 - *Lifetime*: Oct. 21, 2001 to Nov. 25, 2004
 - *Single aft-viewing antenna*
 - *PI*: Dr. Paul Straus, The Aerospace Corporation
- IOX data limited over North America due to spacecraft downlink

Courtesy NASA/JPL-Caltech

IOX GPS RO
IOX Classification of Scintillation

- Scintillation defined by large variations in C/A SNR.
- S4 calculated using data above 150 km
- Profile classified as scintillated when $S4 \geq 0.1$
 - IOX Noise Threshold: ~ 0.02
Region of Interest for Study

- Northern Hemisphere Storms: 152 (>600 days)
- Southern Hemisphere Storms: 76 (>300 days)
- Equatorial Hemisphere Storms: 287 (>400 days)
Scintillation within 1500 km of Storm Center

- Typically mid-latitude scintillation occurred ~10-30% of time
- Equatorial scintillation near storms occurs more frequently than at mid-latitudes
- Occultations near dawn/dusk terminator removed.
Atlantic vs. Pacific

Distribution of storms

- Total Atlantic Storms: 55
 - Total Days: 215
- Total Pacific Storms: 97
 - Total Days: 540
Atlantic vs. Pacific

Scintillation Occurrence Statistics

- 2002-2004 Atlantic storms observe scintillation over 30%
- 2002-2004 Pacific storms observe scintillation over 50%
- 2001 had small number of nearby occultations, not statistically significant
 - IOX operating only 2 months
Northern vs. Southern Hemisphere

Orientation of Scintillation Occurrence

- Scintillation profiles sorted by relative position to storm eye
- Scintillation not observed southwest of the storm center.
- Pacific storms tend to move west, northwest, north, northeast
- Large percentage of scintillation occurs east of storms
Summary

- IOX GPSRO data was examined for areas in the Atlantic, Pacific, and equatorial regions that are dominated by tropical cyclones.
 - 287 storm periods used over a period of more than three years
- Total number of occultations within 1500 km of storm center: >62000
- If coupling occurs due to the storms, it is very localized.
- Scintillation occurs more than 60% of the time for occultations within 1500 km of storm center in the pacific
- Scintillation occurrence does not occur southwest of the storm center
- Scintillation occurrence shows no dependence on Kp, Dst

Acknowledgements: This work is supported under The Aerospace Corporation’s Independent Research and Development Program
References

