
FORMOSAT-7/COSMIC-2 RADIO OCCULTATION MISSION: FROM RESEARCH TO OPERATIONS

Presenter: Chen-Joe Fong
National Space Organization (NSPO)

29 March 2012

CO-AUTHORS

- Chen-Joe Fong, National SPace Organization (NSPO)
- Vicky Chu, National SPace Organization (NSPO)
- Nick L. Yen, National SPace Organization (NSPO)
- Jer Ling, National SPace Organization (NSPO)
- Tiger J.-Y. Liu, National SPace Organization (NSPO)
- G.-S. Chang, National SPace Organization (NSPO)

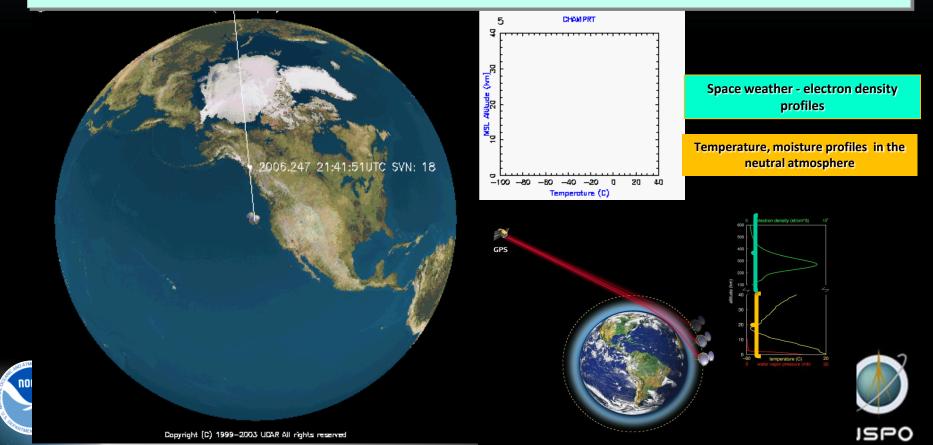
OUTLINE

- Radio Occultation (RO) Background
- > FORMOSAT-3/COSMIC Mission Status and Achievement
- > FORMOSAT-7/COSMIC-2 Mission Overview
- > FORMOSAT-7/COSMIC-2 Current Status
- **Conclusion**

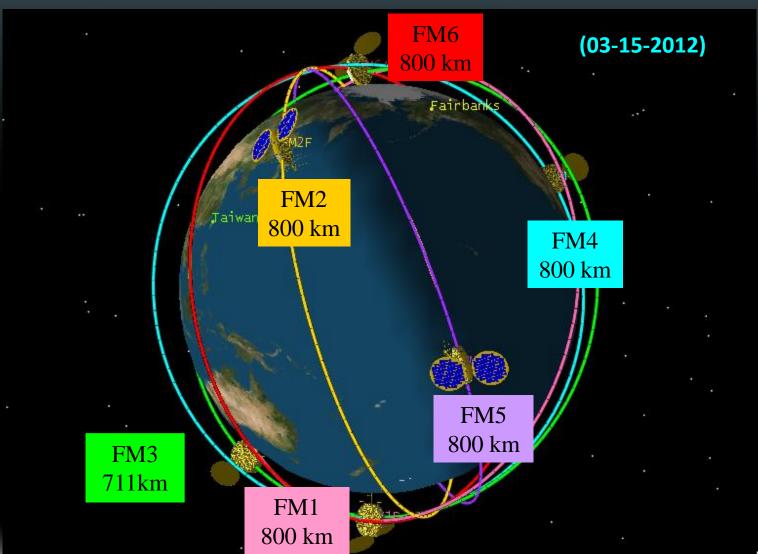
BACKGROUND

FORMOSAT-3/COSMIC

- COSMIC = Constellation Observing System for Meteorology, lonosphere, and Climate
- 6-mocrosatellite scientific "research" demonstration mission
- Launched in April 2006
- World's first operational GPS-RO mission for:
 - Global Earth weather forecasting
 - Climate monitoring
 - Atmospheric, Ionospheric, and Geodetic research
- Currently providing near-real-time data to 1,781 users in 59 countries (as-of-3/1/2012)
- Reaching end of design life in 2011
 - Performance already beginning to degrade
- April 2012 will be the 6th Anniversary



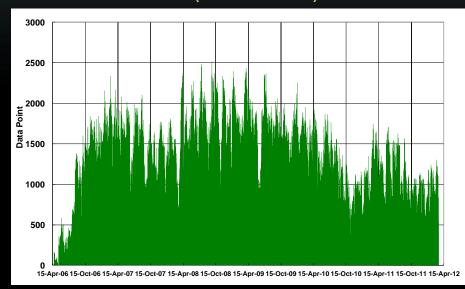
HOW IT WORKS


 $N = 77.6(P/T) + 3.73 \times 10^{5}(P_{w}/T^{2}) - 40.3 \times 10^{6}(n_{e}/f^{2})$

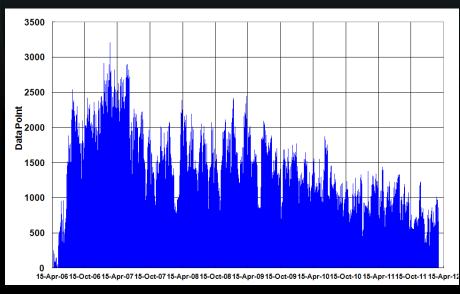
where

The refractivity, N, is a function of temperature (T in K), pressure (P in hPa), water vapor pressure (P_w in hPa), and electron density (n_e in number of electrons per m³), and f is the frequency of the GPS carrier signal in Hz.

CURRENT FORMOSAT-3/COSMIC CONSTELLATION



FORMOSAT-3/COSMIC RADIO OCCULTATION PROFILES


Atmospheric

(03-15-2012)

Ionospheric

(03-15-2012)

2,913,677 Profiles

2,916,771 Profiles

Global Data Users Status: 59 countries, 1781 users

As-of- 3/1/2012

						57	
U.S.A.	573	Austria	15	Turkey	4	Hungary	1
Taiwan	278	Philippine	13	Czech	4	Egypt	1
India	188	Spain	11	Bulgaria	3	Senegal	1
China	134	Denmark	10	Israel	3	Bangladesh	1
Japan	68	South Africa	10	Peru	3	Cuba	1
Germany	39	Iran	9	Singapore	3	Tanzania	1
Canada	38	New Zealand	7	Ethiopia	3	Kazakhstan	1
U.K.	43	Nigeria	7	Belgium	2	Kenya	1
Korea	39	Switzerland	6	Puerto Rico	2		
Russia	40	Malaysia	6	United Arab Emirates	2		
Brazil	32	Poland	5	Cyprus	2		
Indonesia	28	Portugal	4	Bhutan	1		
Australia	27	Ukraine	4	Costa Rica	1		
Italy	26	Thailand	4	Sweden	1		
France	26	Chile	4	Ireland	1		
Vietnam	18	Finland	4	Norway	1		
Argentina	16	The Netherlands	4	Pakistan	1		

Courtesy from TACC, TWB

RO DATA STATISTICS OF FORMOSAT-3/COSMIC USERS

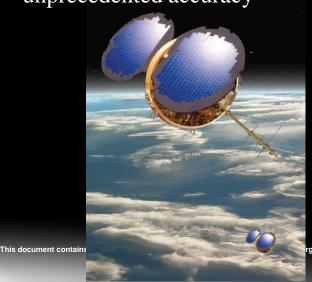
As is of 2/29/2012

CURRENT FORMOSAT-3/COSMIC SPACECRAFT/PAYLOAD STATUS

	FM1	FM2	FM3	FM4	FM5	FM6
Spacecraft	- Battery Degrade (80% Duty Cycle)	- Lost 1 of 2 Solar Arrays Power -Average ~70 % Duty Cycle - Ever lost contact for 43 days in early 2012	- Solar Array Stuck - Battery Fail - Went into coma since June 6 2010 - Still able to make contact with very low power (< 30%) occasionally	- Battery Seriously Degraded (has to shut down P/L in eclipse) - Ever lost contact for 14 & 2 days in March 2012	- One Battery Cell failure - Ever Lost Contact Sep 26, 2010 for 50 days	- Battery Degraded (65% duty cycle) - Ever Lost Contact In 2007 for 67 days
GOX Payload	- POD-01 Low SNR	- POD-02 Low SNR	- N/A	- POD-01 Low SNR	- Lost POD-01 - OCC-01 Low SNR	- POD-01 Low SNR - OCC-01 Low SNR

(3-15-2012)

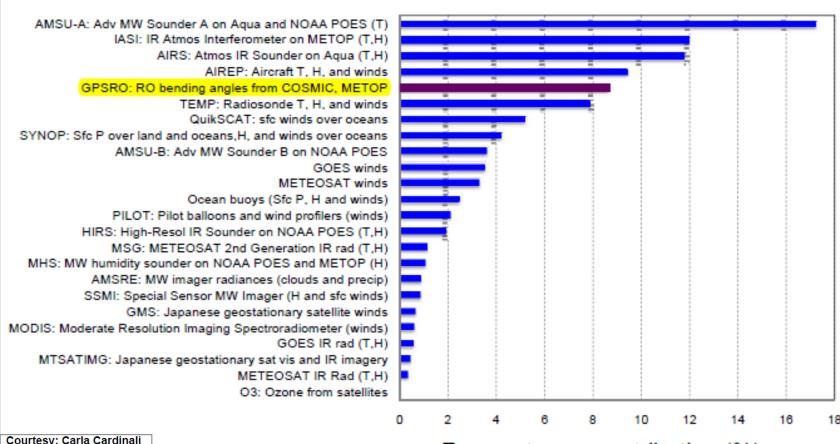
FORMOSAT-3 RO STATISTICS (2008.09~2012.02)



- FORMOSAT-3/COSMIC RO numbers went below 1000 in Nov 2010, and now is 1000 per day in average.
- FM1,FM4,FM5,FM6 using new L2C tracking with new firmware, it helps OCC profiles in current S/C condition (up to 30% more sometimes)

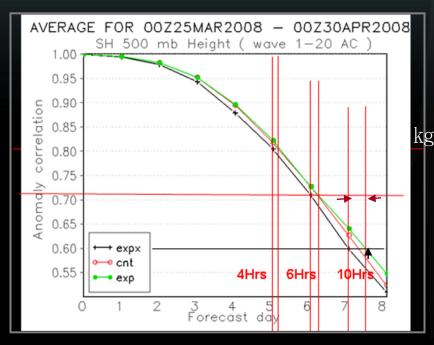
FORMOSAT-3/COSMIC

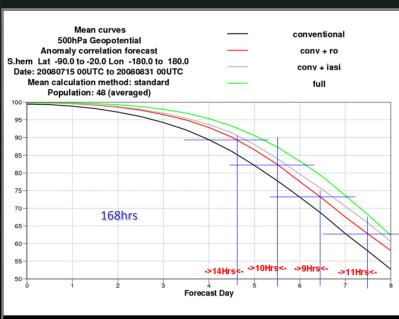
- FORMOSAT-3/COSMIC has been proven to:
 - Increase the accuracy of the predictions of hurricane behavior
 - Significantly improve long-range weather forecasts
 - Monitor climate change with unprecedented accuracy



ganization (NSI

EFFECTIVENESS OF GPS RO DATA

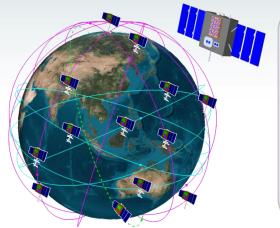

ECMWF ranked GPS RO data as the 5th place in all atmospheric observation data collected by space- and air-borne sensors in which GPS RO contributed 4.7% data that improved 8.5% of weather prediction error. (Sept.~Dec. 2008)



Courtesy: Carla Cardinali and Sean Healy, ECMWF 22 Oct. 2009

Forecast error contribution (%)

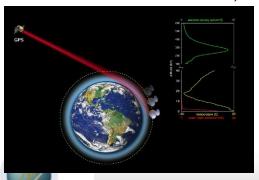
6 % Prediction Accuracy Improvement on Global Prediction Model by Assimilating FORMOSAT-3/COSMIC RO Data (Courtesy of L. Cucurull of NOAA)

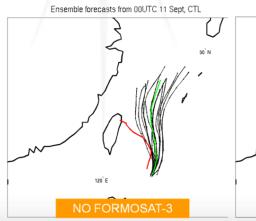


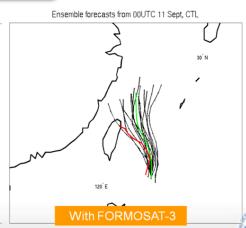
- COSMIC provides significant improvement in Weather forecast skill
 - 8 hours improvement at Forecast Day 4 and
 - >15 hours improvement during Forecast Day 7
- Particularly significant improvement over the oceans and in Southern Hemisphere
 - Analysis COSMIC satellite loss causes significant forecast skill loss

FORMOSAT-7/COSMIC-2 MISSION

Mission: To deploy an operational constellation system of 12 satellites to perform GNSSRO atmospheric and ionospheric soundings for weather forecasting and space weather monitoring.




- Acquire the international cooperation
- Build-up indigenous spacecraft technology
- Enhance domestic data processing capability
- Promote GNSSRO data utilization and application

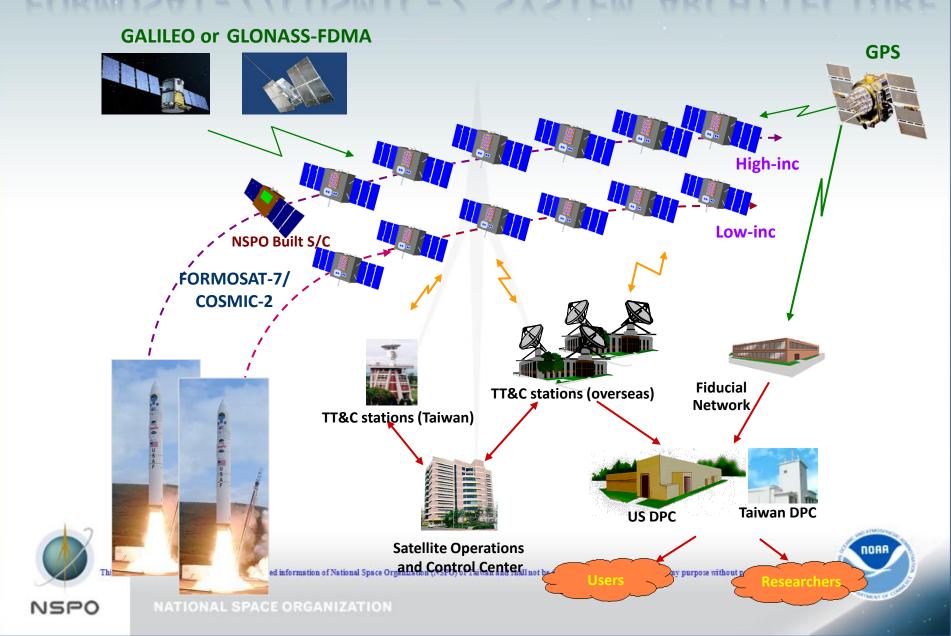


FORMOSAT-7 / COSMIC-2

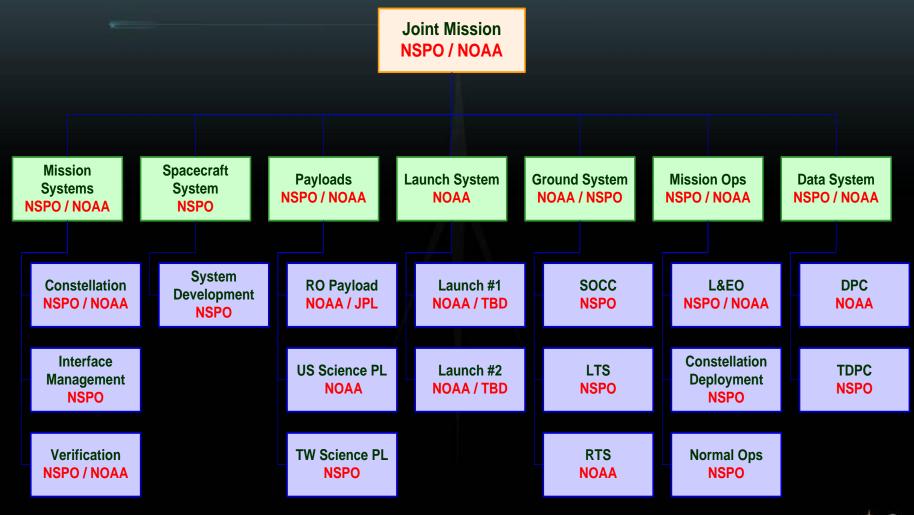
(To be launched in 2015 & 2018)

STARIAGIO GOUITATION TO Bed information of National Space Organization (Red); Observed strack; tBlacks; Ensemble in members progression Ensemble, mean PO

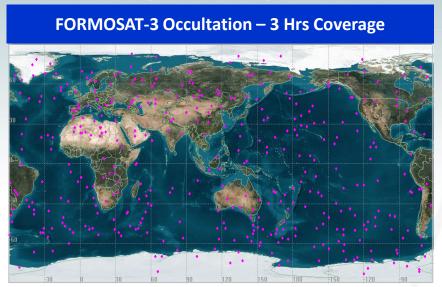
INTERNATIONAL COLLABORATION

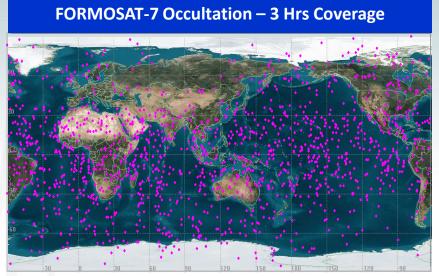

MISSION BASELINES

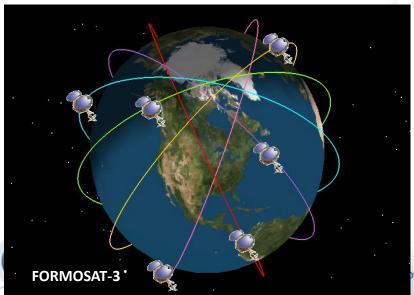
FORMOSAT-7	First Launch	Second Launch			
Mission Objectives	To be achieved after Full Operational Capability: • 8,000 atmospheric sounding profiles per day • 45-min data latency (TBR)				
Constellation	6 SC to low-inclination-angle orbit (mission altitude ~520 km)	 (5+1) or (6+1) SC to high-inclination-angle orbit (mission altitude ~800 km) 7 satellites to be allocated for mission design purpose 			
GNSS RO Payload	TriG	TriG			
Scientific Payload	US furnished VIDI and RF Beacon Instrument	Taiwan furnished TBD			
Launch Vehicle	EELV-like LV (rideshare)	Minotaur IV series or Falcon 9			
Launch Schedule (as a goal)	No earlier than 2015 Q4	2018 Q2-Q3			
Communication Architecture	Via ground station				

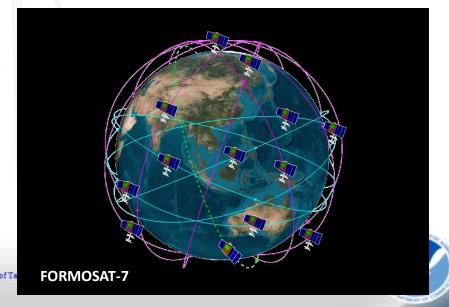


FORMOSAT-7/COSMIC-2 SYSTEM ARCHITECTURE




JOINT MISSION FRAMEWORK BETWEEN NSPO AND NOAA





3-HOURS RADIO OCCULTATION DATA COVERAGE



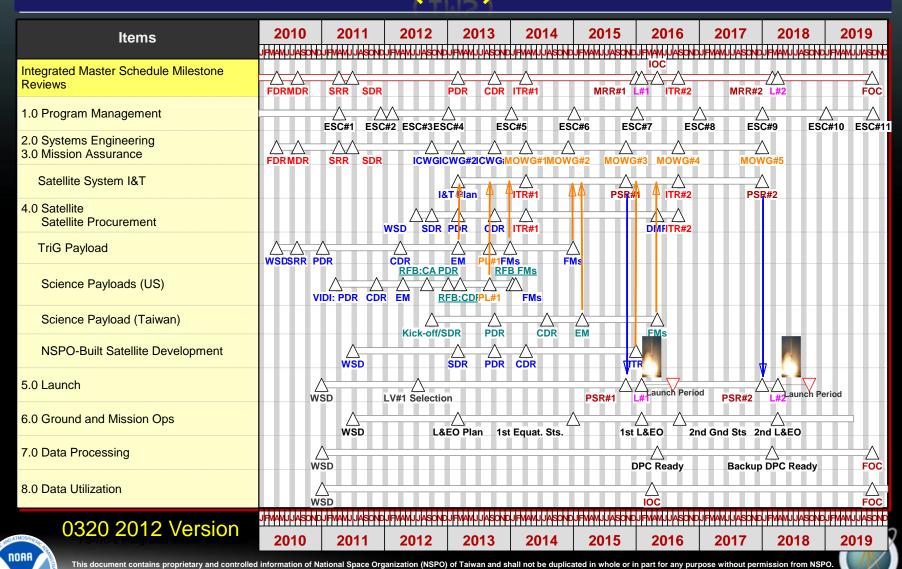
FORMOSAT-7/COSMIC-2 GROUND COMMUNICATION NETWORKS TO ACHIEVE 45 MINUTES DATA LATENCY

72° Orbit Data Recovery
Current FORMOSAT-3 / COSMIC Network

24° Orbit Data Recovery
FORMOSAT-7/ COSMIC-2 Candidate Sites

- KSAT Tromso
- KSAT Troll

- NOAA FCDAS
- NASA McMurdo


FORMOSAT-7/COSMIC-2 STATUS

- NSPO is working on Version 2 (V2) Spacecraft Bus RFP.
- V2 is to make 6 Spacecraft Buses as the required equipment and 6 Spacecraft Buses as the optional equipment instead of acquiring 12 Spacecraft Buses at one time.
- V2 RFI has been posted on NARL website on January 19, 2012.
- Plan to release of V2 RFP in April, 2012
- Planned to select one eligible Bidder and award the Contract by July 2012.

FORMOSAT-7/COSMIC-2 INTEGRATED MASTER SCHEDULE (IMS)

NSPO-BUILT 13TH SATELLITE KEY COMPONENTS

On-Board Computer

- **☑** Prototype Design
- **☑** Detail Spec. Definition

GPS Bus Receiver

- ☑ Radiation and TVC Test

PCDU

✓ Prototype Design✓ Detail Spec. Definition

13th Satellite

- System Electrical Configuration
- Satellite System
 Specification

Optical Fiber Gyro

- ✓ Complete 1-Axis OFG✓ 3-Axes Prototyping

CONCLUSIONS

- □ Research contribution of FORMOSAT-3 mission to weather prediction is considered to be "significant" by the Taiwan CWB and U.S. NOAA's National Weather Service (NWS), and represents an immense benefit to worldwide forecasting capability.
- □ FORMOSAT-3/COSMIC has begun to degrade in 2011, the data gap expected by 2013-2015 due to lost of satellites will result in a significant diminution of performance of the NOAA and CWB's NWP models.
- ☐ The U.S. (NOAA is the designated representative) and Taiwan (NSPO is the designated representative) have proceed to FORMOSAT-7/COSMIC-2 mission, a FORMOSAT-3/ COSMIC followon Radio Occultation mission.
- ☐ It is certain that the implementation and realization of FORMOSAT-7/COSMIC-2 operation mission will continue to fulfill this important mission and further increase weather forecast capabilities.

