Estimating the Optimal Number of GNSS Radio Occultation Measurements for Numerical Weather Prediction

ESA funded GALILEO science study

Florian Harnisch, Sean Healy, Peter Bauer, Stephen English

ECMWF, Reading, UK
Background

- GPS RO data assimilated operationally at ECMWF since Dec 2006: bending angle profiles as function of impact parameter with 1D observation operator
- ~2000 GPS RO profile measurements used per day as part of ~20 million operationally used observations: 90% radiances, 5% other satellite data, 5% conventional

→ positive impact of GPS RO in ECMWF system

- Observing System Experiments (OSEs) (Radnoti et al 2011):
 → no signal of ‘forecast impact saturation’
Background

- one of ECMWF aims:
 ‘Contribute towards the optimisation of the Global Observing System’

- no guidance regarding the optimal number of RO observations in the future Global Observing System (GOS)

- Outcome of NWP sub-group at the 1st IROWG Workshop:
 ‘IROWG recommends to encourage observing system simulation experiments (OSSE) to determine the optimal number of observations for different applications.’
Aims of the study

(1) How does the impact of GPS RO measurements scale with the observation number?

(2) Is an apparent saturation limit in the observation impact?

- Generation of simulated GPS RO bending angle profiles: up to 64000 per day

- OSSEs that use an ensemble of data assimilations (EDA) approach to investigate the impact of simulated GPS RO bending angle profiles in the ECMWF model
Simulation of GPS RO data

ECMWF NWP analysis at T799 (~25 km) and L91 → proxy for the ‘truth’

randomly distributed observation time and location (lat, lon, limb-azimuthal angle)

interpolate

simulated bending angle profiles \(\alpha(a) \)

add realistic observation errors

2D bending angle operator (Healy et al. 2007)

bending angles on 247 fixed impact heights \(h (a - R_c) \) similar to operationally used GRAS data
12-hourly coverage of GPS RO data

real GPS RO data (N = 1157)

simulated GPS RO data, N = 1000

N = 4000

N = 32000
Assimilation of simulated data

- Assimilation of bending angles with 1D observation operator used operationally at ECMWF. Ignore the 2D nature of the measurement and integrate

\[
\alpha(a) = -2a \int_a^\infty \frac{d \ln n/}{\sqrt{x^2 - a^2}} dx
\]

Healy and Thepaut (2006);

\[
N = \frac{77.643 P_d}{Z_d T} + \frac{6.3938 \varepsilon}{Z_w T} + \frac{3.75463 \times 10^5 \varepsilon}{Z_w T^2}
\]

Rüeger (2002);
Healy (2011)

- no tangent point drift
- assumed observation error:

20 % of the observed value at \(h = 0 \),
falling linearly to 1 % at \(h = 10 \text{ km} \)
1 % for \(h > 10 \text{ km} \) until this reaches a lower limit of 3 \(\mu \text{rad} \) (~ 32 km)
4D-Var test experiment for July 2008

Observation error statistics
simulated 64000 GPS RO
normalized background fit
operational used GRAS data
normalized background fit

- ‘naked’ 4D-Var exp: no other observations assimilated

- normalized fit \[\frac{y - H(x)}{\sigma_o} \]

- larger observation errors assigned to GPS RO obs above 26 km in 2008
Forecast impact of simulated GPS RO

ACC of 200 hPa geopotential

- **S.Hem.**
- **N.Hem.**

RMSE of 200 hPa temperature for July 2008

- **S.Hem.**
- **N.Hem.**

→ even 64000 GPS RO profiles per day are not able to capture the full information content of the operational ECMWF analysis
The EDA concept

- ensemble of n-independent 4D-Var data assimilation members
- correct representation of the main analysis error sources
 → spread of the ensemble of analyses x_n^{a} and forecasts x_n^{f}
 yields information on analysis error ε_a and forecast error ε_f
 → flow-dependent background errors

(\ddagagar et al. 2005; Isaksen et al. 2010)
Setup of EDA experiments

- period July – September 2008
- 6 EDA experiments with operationally assimilated observations + 2000 4000 8000 16000 32000 64000
 simulated GPS RO profiles

10 member ensemble

12-hourly 4D-Var analyses (EDA)
at T399 L91 with two minimisations at T95 / T159 at 00 UTC and 12 UTC

120 hour forecasts at 00 UTC at T399 L91
The OSSE – EDA approach

- proof of concept for simulated ADM-AEOLUS data \((Tan \ et \ al. \ 2007)\)
- only observations of interest (GPS RO) need to be simulated
- realism, interpretation and calibration of OSSEs may be difficult

- evaluation of ensemble spread

\[
s_i = \sqrt{\frac{1}{D} \sum_{d=1}^{D} \left(\frac{1}{N-1} \sum_{n=1}^{N} (x_n - \bar{x})_i^2 \right)}
\]

- no consideration of the absolute observation impact
 → no re-scaling of the spread
- positive impact of additional simulated GPS RO → reduced spread

\[
I_{64000\to8000} = s_{64000} - s_{8000}
\]

- extent of spread reduction → onset of saturation
First results (July 08 – 17, 2008)

T (K) at 100 hPa: 10-member ensemble spread for + 0 h for June 8 - 17, 0 / 12 UTC
First results (July 08 – 17, 2008)

- reduction of spread for T with more GPS RO profiles
 - larger at higher levels
 - largest for analysis
 - consistent through different FC lead times

[Graphs showing temperature profiles over time for different lead times: AN + 24 h, AN + 48 h, AN + 120 h]
First results (July 08 – 17, 2008)

$S_{64000} - S_{8000}$

- **Z (m) at 200 hPa**
- **U (m/s) at 200 hPa**
- **T (K) at 850 hPa**
- **rh (%) at 850 hPa**
Summary & Outlook

- OSSEs using the EDA approach → applied to simulated GPS RO
- Positive impact of 64000 vs. 8000 simulated GPS RO profiles per day in the ECMWF EDA system
- Largest impact on upper-tropospheric / stratospheric T
- Positive impact also on other parameters (rh, Z, U, ...)

Perform full set of experiments with simulated GPS RO for information on impact saturation

→ How many GPS RO profiles?

EDA spread ~ function (N) ?