GNSS RO Sampling for Climate Purposes

Stephen Leroy, Chi Ao, Olga Verkhoglyadova

International Radio Occultation Working Group Meeting

Estes Park, Colorado

April 2, 2012
Outline

- Introduction to sampling error for GPS RO
- Bayesian interpolation
 - Under-fitting and over-fitting
 - Two levels of inference
- Application to CHAMP and COSMIC
 - Evidence for basis and regularizer
 - Simulations of sampling error
- Systematic sampling error
 - Singularities in sampling density
 - Under-resolution of atmospheric structure
- Conclusions
Sampling Error

- Simulate a distribution of soundings.
- Interpolate reanalysis to time and location of soundings.
- Form climatology based on reanalysis “data”: height of 200-hPa dry pressure surface.
- Compare to reanalysis gridded “truth”.
Sampling Error

- Simulation
- Interpolation
- Form closure correction
- Comparison

height of
Sampling Error

- Simulation
- Interpolation
- Form closure
- Comparison
Analysis: Bayesian Interpolation

\[\chi^2 = \beta |t - \phi w|^2 + \alpha w'Cw \]

\[B = \phi'\phi \]

\[A = \beta B + \alpha C \]

First inference: \[w = A^{-1} \beta \phi' t \]

Second inference: \[\gamma = k - \alpha \text{Trace} A^{-1} C = N - \beta |t - \phi w|^2 \]

Evidence: \[P(t \mid B, R) = \alpha_{\text{MP}}^{k/2} \left(\frac{\beta_{\text{MP}}}{2\pi e} \right)^{N/2} \left(\frac{|C|}{|A|} \right)^{1/2} \Delta \alpha \Delta \beta \]
Example fits: CHAMP and COSMIC
Tunable parameters

• **Basis**
 - maximum degree of spherical harmonic expansion l_{max}, bears on spatial resolution

• **Regularizer**
 - Exponent of curvature penalty μ
 - Relaxation of global mean penalty ρ
 - Relaxation of meridional gradient penalty ν
Evidence

CHAMP

COSMIC

Meridional Gradient Coefficient v

Meridional Gradient Coefficient v
Sampling error: Monthly averages

- Minimum number of spherical harmonic degrees to resolve atmospheric structure
- Denser data means smaller sampling error
- Mid-latitudes have largest sampling error because of synoptic variability
Sampling error: Penalty exponent

Northern mid-latitudes

Tropics

Southern mid-latitudes

(a)

(b)

(c)

Max degree of expansion

Standard deviation [m]
Sampling error: Reduce time window

Northern mid-latitudes

Tropics

Southern mid-latitudes

![Graphs showing standard deviation vs. max degree of expansion for different regions and satellite types.](image)
Systematic Sampling Error

Binning and averaging
Systematic Sampling Error

Binning and averaging

Bayesian interpolation

April 2, 2012

Leroy et al.: GPS RO Sampling
Systematic sampling error cause

Latitude = 48.84°, 21.14° N & S

δ = δ_m
Summary

- Using the height of the 200-hPa dry pressure surface, CHAMP requires a 14th degree spherical harmonic fit, COSMIC a 20th degree fit.
- Little gained from relaxing penalty for meridional gradients, global mean. Optimum penalty is the square of the curvature.
- Reducing the sampling time permits better resolution of both spatial and temporal structure of synoptic variability.
- Bayesian interpolation eliminates problem of systematic error in binning and averaging climatologies but introduces another due to spherical harmonic truncation. Fingerprinting studies should truncate spatial fingerprints accordingly.

This work was funded by a grant from the NASA Jet Propulsion Laboratory’s Director’s Research and Discretionary Fund and by the CLARREO Project.
Extra slides
Present and Planned GNSS RO Missions

- **MetOp-A, EUMETSAT, 2006-present.** ~500 soundings daily; intermittent availability.
- **COSMIC, Taiwan (UCAR), 2006-present.** ~2800 soundings daily; degrading because of age.
- **TerraSAR-X, Tandem-X, DLR, 2008-present.** Both operational.
- **OceanSat, Indian Space Agency, carrying ROSA.**
- **EQUARS, Brazil-Japan.**
- **COSMIC-2, Taiwan-US.**