Assessment of Radio Occultation Observations to Improve Space Weather Nowcasts Using the JPL/USC Global Assimilative Ionosphere Model

Anthony J. Mannucci, Attila Komjathy, Mark Butala, Xiaoqing Pi, Olga Verkhoglyadova, Byron Iijima, Brian D. Wilson and Vardan Akopian

Jet Propulsion Laboratory, California Institute of Technology

Session 6 “Ionosphere”
Friday March 30, 2012
Outline

1. The radio occultation data set
2. Survey of results
 1. Value of radio occultation to ionospheric space weather: electron density profile shape
 2. Benefit of COSMIC-2: more profiles, and filling in geospatial “holes”
 3. Driver estimation (“holy grail”)
3. Summary and conclusions
GPS Receivers in Low Earth Orbit: Electron Density Maps

COSMIC coverage: 2500 profiles/day
Occultation Locations for COSMIC, 6 S/C, 6 Planes, 24 Hrs

800 km altitude
72° inclination, 6 planes

Six-satellite COSMIC constellation
Launched April 14, 2006

November 4, 2010

ajm/JPL SEASONS Conference 2010

AJM/JPL
Coverage of Daily IGS Network and Regional Networks

(10 degree elevation mask; 450 km shell height)
Global Assimilative Ionospheric Model
Data Assimilation Process

- 4-Dimensional Variational Approach
 - Minimization of cost function by estimating driving parameters
 - Non-linear least-square minimization
 - Adjoint method to efficiently compute the gradient of cost function
 - Parameterization of model “drivers”

- Kalman Filter
 - Recursive Filtering
 - Covariance estimation and state correction
 - Optimal interpolation
 - Band-Limited Kalman filter
GAIM Magnetic Aligned Grids

Intersections of:
- magnetic field lines,
- magnetic geopotential lines
- and magnetic longitudes
GAIM VTEC RMS Difference Versus JASON Altimeter

06/01/2004 to 11/08/2004 200 stations/day 137 days
Ground and COSMIC Coverage Example (Sept 21, 2006)

- Ground GPS: dense but unevenly distributed coverage
- COSMIC: less dense yet evenly distributed coverage
COSMIC Coverage on Nov 21, 2008
The use of COSMIC+ground-GPS data over ground-GPS only significantly improved TEC predictions for all 3 days processed: 30, 28 and 44% respectively.

Regional Coverage and COSMIC-2 Simulation Experiment

dTEC over ocean (GAIM) - Probability[|dTEC|<10%]

IUGG, Melbourne, Australia
Arecibo ISR Study for June 26, 2006
COSMIC Overflight Jicamarca Radio Observatory

1. UT 15:36

2. UT 15:48

3. UT 16:36

COSMIC UT 15:30

Height km

0 2 4 6 10^{11} \text{el/m}^3

Elevation angle

10 15

UT hours

Sept 21, 2006

October 27, 2009

Formosat-3/COSMIC 2009

AJM/JPL
IRI and GAIM TEC Integrated from ALTAIR to LEOs

LEO altitude: 836 km
Time of pass: 12:30 UT

786 km 11:10 UT

575 km 10:10 UT

757 km 9:50 UT

490 km 8:30 UT
Profile Shape is Critical

Profile above ALTAIR, 2008-09-17 12:31, lat=9.4, lon=167.5

Profile above ALTAIR, 2008-09-17 08:24, lat=9.4, lon=167.5
Improvement from COSMIC

- Time of ALTAIR track has been shifted to 5:00 UT to coincide with COSMIC pass
- Top-side has improved (to the detriment of NmF2) and the bottom-side remains unchanged
- GPS+COSMIC is the closest to the ground truth
COSMIC Coverage on Nov 21, 2008
Ionosonde Locations in RSA

Green – ground GPS
Red - ionosonde

MU12K HRAO RBAY
LV12P SUTH
SIMO HE13N GR13L

(22.4°S, 30.9°E) Madimbo
(28.5°S, 21.2°E) Louivale
(33.3°S, 26.5°E) Grahamstown
(34.4°S, 19.2°E) Hermanus

Courtesy of L. McNamara
Nmf2 (e/m³) Statistics for Nov 21, 2011

Slopes:
Climate: 0.565
Ground: 1.387
G+C: 1.352
G+C2: 1.349
Day-To-Day Ionospheric Variability

Range Delay at L1 (m) for Hamilton, MA 1981:

- JANUARY
- FEBRUARY
- MARCH
- APRIL
- MAY
- JUNE
- JULY
- AUGUST
- SEPTEMBER
- OCTOBER
- NOVEMBER
- DECEMBER

Local Time

TEC
Regions In Geospace: Ionosphere is Near-Earth Space
Variability During Geomagnetic Storms
October 30, 2003

Electron content above 400 km altitude

Mannucci et al., *GRL* 2005

“Global Ionospheric Storm”
Storm Day: Oct 29, 2003, NGAIM and Truth Storm Features at NLIB

VTAC Map from gain_state_rll_20031029_194806.mat

Obs Vertical TEC 031029-1945-2000

First Interplanetary Coronal Mass Ejection

DST -350 nT at 0125 UT on October 30
Storm-time data assimilation
August 6-7 2006

Electron density contours showing the assimilative modeling results in altitude vs. latitude dimensions at 125° longitude, for the quiet day (August 6, 2006; upper left), storm day (August 7, 2006; lower left), and percentage difference between the disturbed and quiet state (upper right). A comparison of sample electron density profiles at the equator is also provided in the lower-right panel. The corresponding local time is 1844 for this longitude. The storm-time disturbance shows clear features of equatorial anomaly enhancement that must be driven by an enhancement of eastward electric field at low latitudes.

Global Assimilative Ionospheric Model
Data Assimilation Process

- 4-Dimensional Variational Approach
 - Minimization of cost function by estimating driving parameters
 - Non-linear least-square minimization
 - Adjoint method to efficiently compute the gradient of cost function
 - Parameterization of model “drivers”

- Kalman Filter
 - Recursive Filtering
 - Covariance estimation and state correction
 Optimal interpolation
 Band-Limited Kalman filter
Driver Estimation Using 4DVAR

Prod Estimation 6/1/2002

Estimation Cycles = 12

Production Factor

GAIM++4DVAR Estimation of V & P; 6/1/2002

Vertical E×B drift
Tohoku Tsunami Seen in Ionosphere Using GPS Compared with JPL’s Song Tsunami Model

Gravity Waves

Ocean Tsunami model Observations from ~1200 GPS receivers

- Tsunami generates atmospheric gravity waves that propagate to ionosphere.
- Allows imaging of tsunami using GPS Total Electron Content.

Potential application:
- Real-time tsunami monitoring and early warning

Attila Komjathy (335G), David Galvan (335G), Y. Tony Song (3244), Tony Mannucci (335G)
Galvan et al, 2011, submitted to JGR
Summary & Conclusions

1. The radio occultation data set

2. Survey of results
 1. Value of radio occultation to ionospheric space weather: profile shape
 2. Benefit of COSMIC-2: more profiles, and filling in major gaps
 3. Driver estimation ("holy grail")

3. Summary and conclusions
Earth-Sun System Exploration 5
January 13-19, 2013
Kona, Hawai’i

“Earth Sun System Disturbances: Weak, Moderate, and Extreme”

Convenors: Patrick T. Newell and Bruce Tsurutani
Program Committee
(Sun through ionosphere)
Kazunari Shibata, Kyoto University, Japan
Roberto Bruno, Instiuto Fisica Spazio Interplanetario, Italy
Larry Lyons, University of California, Los Angeles, USA
Tony Lui, JHU/Applied Physics Laboratory, USA
Jesper Gjerloev, University of Bergen, Norway

E-layer science session