Antennas for the Next Radio Occultation Mission

Mar. 29, 2012

Tom Meehan Dmitry Turbiner

Jet Propulsion Laboratory California Institute of Technology Pasadena, CA USA

Copyright 2012 California Institute of Technology Government sponsorship acknowledged

Antennas for the Next Radio Occultation Mission

Early POD Antenna Testing

Early POD Antenna Testing

Antennas for the Next Radio Occultation Mission

Early Antenna Testing

D&M Flat Ground Plane

Shown with permission from Nick's Mom

Early Antenna Testing D&M Flat Ground Plane

Time (hrs)

Early Antenna Testing D&M Flat Groundplane

JPL

(hrs)

Early Antenna Testing Choke Ring with/without D&M

Early Antenna Testing 2 & 3-ring Choke Ring

Rooftop POD Antenna Testing

2-ring vs 3-ring choke

POD Antenna Testing

COSMIC-1 Occultation Antenna Pattern

COSMIC-1 Occultation Antenna Testing

COSMIC-1 Occ antenna vs CHAMP Occ Antenna

SNR Issues

SNR Issues

Some Occultation Antennas

GRAS GPS (MetOp)

ROSA (SAC-D)

Lower Troposphere Performance in Tropics

Not all profiles retrieved to the surface (worse for low SNR)

Key Design Criteria

- Wide-band, High Performance (SNR over the region of interest)
- Low Weight
- Reproducible with minimal fine-tuning
- Low cost, but "Flight"
- Must fit. I 0cm x 40cm x 60cm

ff_2D_GainRHCP Helix Antenna ADKv1 when 25.00 xdb10Beamwidth(3) Curve Info max dB(GainRHCP) L1 : LastAdaptive Freq='1.575GHz' Phi='0deg' 63.7375 15.4565 Name Х - dB(GainRHCP)_1 m1 0.0000 14.0593 L2 : LastAdaptive Freq='1.227GHz' Phi='0deg' 14.0593 59.9607 0.0000 15.4565 m2 m2 171 - dB(GainRHCP)_2 dB(GainRHCP)_2 L1 : LastAdaptive Freq='1.575GHz' Phi='90deg' 17.1111 15.4565 12.50 dB(GainRHCP)_3 L2 : LastAdaptive Freq='1.227GHz' Phi='90deg' 21.5746 14.0593 -0.00 -12.50 5 -25.00 -37.50 -50.00 2.5 turns Rect Helix 4-element array -62.50-200.00 -150.00 -100.00 -50.00 0.00 50.00 100.00 150.00 200.00 Theta [deg]

JPL Proprietary Information - Do Not Copy or

Test Hardware Occultation Antenna Testing

Occultation Antenna Testing

3x4 Steerable Helix Array SNRv; Elevation Cut

3x4 Steerable Helix Array SNRv (Combined)

Helix Array Config for Azimuth Cut

3x4 Steerable Helix Array

Array_Test_Helix_rot15deg PRN17 09/10/2011

Digital Beam-forming over Azimuth Range

1x4 Steerable Helix Array Phased for Limb

Summary

- 2-ring choke ring with D&M element for POD
- Materials selection for prototype, flight tested
- Passively steered towards limb from vertical to allow un-tilted mount to spacecraft
- I2 element design complete and prototype fab complete
- Working on more compact and 15 element designs as options