The cold point tropical tropopause observed by GPS

Bill Randel
Atmospheric Chemistry Division, NCAR
Convection and thermal structure in the tropics

- Cold point tropopause ~17 km
- Main convective outflow ~12 km
- Lapse rate from radiative-convective equilibrium
EVIDENCE FOR A WORLD CIRCULATION
 PROVIDED BY MEASUREMENTS OF HELIUM
 AND WATER VAPOUR DISTRIBUTION IN THE
 STRATOSPHERE

By A. W. BREWER, M.Sc., A.Inst.P.

Water vapor 'tape recorder'

Mote et al 1998

HALOE H₂O (-12.5-12.5)

Cold tropopause temperatures produce enhanced dehydration
Tropical temperature seasonal cycle

![Graph showing temperature change with height and time (Jan and Aug) with 17.5 km indicated.]
Objective: use GPS data to understand variability of tropical cold point

Zonal average GPS data over 10° N-S from CHAMP + COSMIC

Daily data for 2001-2011 (ten complete years)
5-day average observations (730 pentads for 2001-2011)
Annual cycle in temperature

![Graph showing annual cycle in temperature with GPS and radiosondes indicated.](image)
'raw' time series

GPS 10–10 12–24km

Remove seasonal cycle

GPS 10–10 12–24km ano
Anthes et al, 2011; from Torsten Schmidt
Regression fits of QBO and ENSO 2001-2011

\[T = a \times \text{ENSO} + b_1 \times \text{QBO}_1 + b_2 \times \text{QBO}_2 \]
deseasonalized

<table>
<thead>
<tr>
<th>GPS 10–10 12–24km ano</th>
</tr>
</thead>
<tbody>
<tr>
<td>T(K)</td>
</tr>
<tr>
<td>2001 2003 2005 2007 2009 2011</td>
</tr>
</tbody>
</table>

Remove QBO and ENSO

<table>
<thead>
<tr>
<th>GPS 10–10 12–24km resi</th>
</tr>
</thead>
<tbody>
<tr>
<td>T(K)</td>
</tr>
<tr>
<td>km</td>
</tr>
<tr>
<td>2001 2003 2005 2007 2009 2011</td>
</tr>
</tbody>
</table>
Variance after removing seasonal, QBO, ENSO components

![Residual variance plot with a dashed line at 18 km]
EOF analysis of residuals

COSMIC 10–30km EOF1 75.4%

COSMIC 10–30km EOF2 16.3%

Deep stratosphere signal

Near tropopause signal

EOF1 projection

EOF2 projection
Tropical cooling linked to major stratospheric sudden warmings.

September 2002

January 2009

EOF1 projection

SH warming Sept 2002

NH warming Jan 2009

Spatial structure of temp anomalies
Analysis of lapse rate dT/dz

What is more fundamental: T or dT/dz?
deseasonalized residuals

GPS 10–10 \(\frac{dT}{dz} \) ano

\(\frac{dT}{dz} \) variance

\(\frac{dt}{dz} \) residual variance

17.5 km
EOF analysis of residuals for dT/dz

DT/DZ 10–30km EOF1 51.6%

EOF1 projection
Key points:

- Novel high vertical resolution record of zonal mean tropical atmosphere
- Strong, coherent QBO and ENSO signals in GPS data
- Residual variance maximum near cold point tropopause (~18 km)
- Enhanced variability linked to stratospheric sudden warmings
- ‘Climate noise’ near cold point tropopause poorly understood
Thank you
Interannual changes in stratospheric water vapor
Changes in stratospheric H_2O are tied to tropopause temperatures

What controls variations of the tropical cold point?
Temperature annual and semi-annual harmonics