

Impact of Satellite Orbits and Clocks on Radio Occultation (RO) Data Processing

Yoke Yoon, Yago Andres, Axel von Engeln, Christian Marquardt Oliver Montenbruck (DLR), Andres Hauschild (DLR)

IROWG-2 Estes Park, CO 28 March – 3 April 2012

Overview

- Introduction
 - ERA-CLIM project
 - Contribution from EUMETSAT
- □ Impact of satellite orbit and clock quality in MetOp RO data processing
 - Post-processing using final GPS products (ERA-CLIM)
 - NRT using various NRT and RT GPS products (operational)
- COSMIC POD at EUMETSAT
 - Results and discussion on achievable accuracy

Introduction

- ☐ European Re-Analysis of global CLIMate observations (ERA-CLIM)
 - Project headed by ECMWF
 - Re-analysis of in-situ and satellite observation data in generating consistent global model of Earth's climate system
 - Objective is to improve on numerical weather forecasting
- EUMETSAT RO activity in ERA-CLIM
 - Provide reprocessed GPS RO observations (2001-present) from MetOp, COSMIC, CHAMP, GRACE, etc
 - Maintain consistency in using the type of GPS products
 - Investigation into GPS orbit and clock products and their impact on POD and in turn RO bending angle profile

- □ Simple layout of post-processing architecture
 - GPS raw data processing
 - Precise orbit determination
 - RO data processing
 - Comparison with ECMWF model

GPS Final Orbit and Clock Products

- ☐ GPS orbit product 15 mins interval
- ☐ GPS clock product 5-min, 15-min interval (standard) and others (table)

EUM/OPS-EPS/VWG/12

- ☐ Studying impact of GPS clock products on RO
 - MetOp GRAS data from 30 Sept 2007 31 Oct 2007 (~1 month)
 - Generated two sets of solution
 - ESOC Repro1 (interpolated 30s GPS clocks)
 - CODE OPS (estimated 30s GPS clocks)
 - Results from analysis
 - MetOp orbit (POD)
 - Bending angle (using geometric optics processing)

- ☐ Studying impact of GPS final products on RO
 - ESOC Repro1 (5 min clocks) vs CODE OPS (30s clocks)

EUMETSAT

Assessment of MetOp POD

Arc-wise (RMS) statistics derived from 4-hr orbital overlap

estimated clocks

interpolated clocks

✓ Along-track velocity

< 0.02 mm/s

< 0.03 mm/s

✓ Median

22/03/2012

0.007 mm/s

0.012 mm/s

3D Position (due to interpolated GPS clock errors) : < 2 cm (RMS)

EUM/OPS-EPS/VWG/12
Issue 1.0

Assessment of bending angle

Assessment of bending angle

- ✓ No visible impact at < 40 km impact height
- ✓ Better STDEV from estimated 30s clocks > 40 km impact height

Near Real Time Analysis

- ☐ STUDY (Collaboration with GSOC/DLR) Assess different GPS based NRT POD concepts with GRAS data (Nov 15 to Dec 15 2011)
 - Different NRT GPS products
 - Different POD s/w tools
 - \Rightarrow Focus on: achieved along-track velocity accuracy resulting bending angles
- MOTIVATION
 - Better understand the effect of NRT LEO and GPS orbits in RO
 - Provide design recommendations/ requirements for future RO missions

System Setup

- ☐ GPS products:
 - CODE rapid (reference)
 - GSN/ESA
 - RETICLE/DLR
 - Broadcast Ephemeris (BCE)
- POD tools
 - ESA/NAPEOS (BAHN) (Batch Filter)
 - DLR/GHOST (Batch Filter)
 - DLR/RTNAV (Extended Kalman Filter)
- ECMWF forward modelling for comparison of Bending Angles (BA)

(Instrument Service Packets) GRAS2Rnx Zenith antenna GRAS LO2LOR IMT/RCVT relation GPS orbit and clock data Broadcast RO antenna Precise Orbit **RDOD** BAHN RTNAV Determination MetOP/GRAS orbit and clock Forward modeling Bending angle GRAS_L0R2L1A **FCMWF** ROPP GRAS L1A2L1E meteo data Background Observed bending angles bending angles (IDL script) Statistics

EUM/OPS-EPS/VWG/12

Issue 1.0

Slide: 13

GPS products and POD setups

	COR	GSN	RTC	BCE
Description	CODE rapid	GSN orbit and clock	RETICLE	Broadcast
	products	products		Ephemerides
Category	post-processed	near-real-time	real-time	real-time
Originator	CODE	ESA/ESOC	DLR/GSOC	GPS
Network	IGS	GSN	IGS R/T & DLR	GPS
Arc length	24 h	orbit: 24 h + 19	-	2 h
		h(pred)		
		clock: 30 m		
Update	24 h	orbit: 3 h	-	2 h
interval		clock: 15 m		
Latency	12 h	orbit: 60-90 m	<10s	-
		clock: <45 m		
Step size	orbit: 15 m,	orbit: 15 m	10 s	-
	clock: 30 s	clock: 30 s		

6 different processing chains:

Napeos: COR (24h arc, daily), GSN (6h arc, 1.5h freq.), RTC (6h arc, 1.5h freq)

GHOST: COR (24h arc, daily), RTC (6h arc, 1.5h freq)

RTNAV: BCE (simulated real time)

Issue 1.0 22/03/2012

Results - POD

Solution	Radial [mm]	Along-track [mm]	Cross-track [mm]	Position (3D rms, [mm])
OFF_COR_N	-6 ± 16	-2 ± 40	+23 ± 13	51
NRT_RTC_N	-7 ± 19	+1 ± 39	+23 ± 16	52
NRT_RTC_G	+1 ± 18	-3 ± 36	-1 ± 14	43
NRT_GSN	-6 ± 18	-2 ± 39	+23 ± 15	51
RT_BCE	+7 ± 195	+157 ± 329	+25 ± 228	473

Solution	Radial	Along-track	Cross-track	Velocity
	[mm/s]	[m m/s]	[mm/s]	(3D rms, [mm/s])
OFF_COR_N	0.00 ± 0.03	-0.01 ± 0.03	0.00 ± 0.02	0.05
NRT_RTC_N	0.00 ± 0.03	-0.01 ± 0.03	0.00 ± 0.02	0.05
NRT_RTC_G	0.00 ± 0.03	0.00 ± 0.02	0.00 ± 0.01	0.04
NRT_GSN	0.00 ± 0.03	-0.01 ± 0.03	0.00 ± 0.02	0.05
RT_BCE	-0.15 ± 0.34	+0.06 ± 0.16	0.01 ± 0.24	0.48

- All NRT solution < 0.1mm/s along track
- Offline & NRT solutions (NAPEOS vs Ghost) agreement ~ 5cm
- Small inter-agency biases in radial (6mm) and cross-track (23mm)
- Simulated RT orbit have a factor 10 larger error in MetOp pos. and vel., but only a factor 2 for along track vel.

Issue 1.0

Slide: 15

Results – NRT Bending Angle

- 15100 rising and setting occultation events, only Geometric Optics processing
- Offline (one day lag) processing provides up to 10% more occultations (unhealthy satellites)
- All NRT solutions provide an almost identical bending angle performance
- Slight deviation at high altitude from BCE-derived BA

Assessment of COSMIC POD

COSMIC Precise Orbit Determination

- Two sets of statistics for 6 COSMIC s/c
 - 2-10 August 2006
 - 26 Nov 3 Dec 2008
- ☐ Internal (orbit overlap) assessment (stats based on median)
 - 3D position (RMS) < 25 cm

[exclude FM6 in 2006]

Along-track velocity (RMS) < 0.1 mm/s

COSMIC Precise Orbit Determination

External orbit assessment (stats based on median)

- ☐ CDAAC (online products)
- ☐ JPL (reprocessed orbits)

3D position < 60 cm

Along-track velocity < 0.2 mm/s

Summary and Conclusions

- ☐ Impact of satellite orbit & clocks on RO processing
 - POD performance and bending angle statistics from post-processing (ERA-CLIM) and NRT (operational) have been assessed using one month of MetOp data
 - MetOp along-track velocity accuracy (POD)
 - ✓ Post-processed < 0.02 mm/s
 - ✓ NRT $< 0.05 \, \text{mm/s}$
 - ✓ RT $\sim 0.2 \text{ mm/s}$
 - Bending angle performance
 - ✓ Clock interpolation error (5min \rightarrow 30s) induced no significant difference
 - ✓ NRT and rapid solutions are identical
 - ✓ RT compatible with NRT for height up to 40km
- ☐ COSMIC POD
 - Overall POD (EUM, UCAR, JPL) results show good agreement

