

Ground Support Network for the GRAS Mission – Status and Evolution

the GRAS GSN team (ESOC) and the Metop GRAS team (EUMETSAT)

02/04/2012

Contents

- GRAS GSN Requirements
- System architecture
- Current status
- Open-loop tracking and Navigation bits
- System evolution

- EUMETSAT operational processing of RO data requires precise orbits and clock solutions for both Metop and the occulting GPS satellite
- Metop POD to be performed in-house, using GRAS tracking GPS through the zenith antenna
- The GPS products are considered 'Support Data', to be provided externally

Support data key requirements

- The key requirements were derived in 2001:
 - Timeliness: 60 min. for orbits and clocks (now: 45 min.)
 - Clock accuracy: 1 ns at 2-sigma for each satellite
 - Can be interpolated at 50 Hz
 - GPS satellite velocity accuracy requirement!
 - Guaranteed high availability (24/7 principle, 99% and constraints on interruptions)
 - Can be operated for 15 years, 2 satellites in parallel
 - Extensible to other missions with similar requirements

Contents

- GRAS GSN Requirements
- System architecture
- Current status
- Open-loop tracking and Navigation bits
- System evolution

High-level GRAS GSN architecture

Contents

- GRAS GSN Requirements
- System architecture
- Current status
- Open-loop tracking and Navigation bits
- System evolution

Evolutions over the last 4 years

- Computer infrastructure re-distributed over two data centres, improving redundancy
- Replacement of legacy GNSS orbit and clock determination software by state-of-the-art Napeos
- 1-Hz to 5-second clock outputs reducing product size
- New IERS and ITRF standards, absolute phase centre
- Replacement of dedicated lines to network providers by internet (cost saving)
- NRT product timeliness from 60 to 45 minutes
- Reporting with IGS-style metrics

Orbit accuracy (May 2010)

GSN near real time orbit vs IGS rapid product

Orbit accuracy (May 2011)

GSN near real time orbit vs IGS rapid product

Clock accuracy (May 2010)

GRAS GSN | Page 11

Clock accuracy (May 2011 - RMS)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

RMS clock offset [ns]

esa

Clock accuracy (May 2011 - Sigma)

GRAS GSN | Page 13

Clock accuracy (May 2011 - Sigma)

- Worst satellite: 0.32 ns
- Overall constellation: 0.23 ns
- Sigma measured in <u>February 2012</u>:
- Worst satellite:

0.16 ns

• Overall constellation: 0.11 ns

GRAS GSN current status summary

- System has been operational since Metop-A launch (October 2006), meeting requirements
- Atmospheric sounding profiles have become a key data set for modelling the upper atmosphere
- Orbit typical RMS: 5-6 cm, clock sigma: 0.1 0.15 ns
- Measured availability: 99.95 % over last 4 years
- GRAS GSN contract extended twice, now until May 2014
- Experimental Navigation Bit Stream Service being implemented...

Contents

- GRAS GSN Requirements
- System architecture
- Current status
- Open-loop tracking and Navigation bits
- System evolution

Navigation bit removal (example)

3-sec time interval

Existing solutions

- For support to the COSMIC mission, UCAR has set up a 'bitgrabber' network
- Consists of 6 receivers distributed globally, which record and deliver the navigation bits as data files
- Coverage is not complete
- GFZ have similarly deployed an increasing network of receivers
- Coverage now essentially complete
- Product generated operationally and available off-line

EUMETSAT request

- EUMETSAT have requested ESOC to extend the GRAS GSN service with an NBS product
- The system should become operational and near-real time (45 minutes delay)
- Availability requirements should be similar to the existing GRAS GSN products
- Implemented in collaboration with GFZ

NBS implementation approach

- A two-phased approach is taken:
- Phase 1:
 - Definition of interfaces and products
 - Setup of a prototype network and prototype data delivery at best effort, for 6 months, based on existing receivers
 - Analysis of possible network configurations
 - Definition of operational requirements
- Phase 2 (pending approval to go ahead):
 - Conversion to operational system

- Phase 1 lasted from July 2011 to January 2012
- Use of modern GNSS receivers that have capability to store navigation bit data internally
- Use of TEQC undocumented feature to extract this into a raw ASCII format
- Software at ESOC converts to a more general-purpose format, and combine into 15-minute products from all receivers
- Experimental network of 11 GFZ and 4 ESOC receivers, running since end October 2011

NBS processing architecture

NBS Phase 1 experimental network

NBS Phase 2 operational network design

- All 4 GSN data providers have agreed to participate ...
- DOC-3 network can be easily achieved

• Prime + redundant stations

Provider	Num	<u>Stations</u>
ESOC	3+ 2	mal2, mas1, faa1, <u>kour</u> , <u>earg</u>
Fugro	5+ 3	f712, f716, f719, f763, f750, <u>f707,</u> <u>f782, f740</u>
GFZ	8+3	unsa, zwe2, mizu, ous2, pots, bis2, jogj, wind, <u>nurk, tash,</u> <u>urum</u>
NRCan	3+1	dr20 (at drao), chur , nr23 (at nrc1), <u>yel2</u> (at yell)
	19 + 9	

Nominal coverage proposed 19-stn network

Contents

- GRAS GSN Requirements
- System architecture
- Current status
- Open-loop tracking and Navigation bits
- System evolution

Short-term evolutions

- Conversion of NBS system into operational system
- Move to IGS-08 reference frame
 - Improved antex information is expected to improve clock solutions
- GRAS GSN is ready to support Metop-B in parallel to Metop-A
- Continuous tuning of availability, accuracy
- Move from Solaris to Linux environment (in 2012)

Evolution perspectives (longer term)

- GSN system could move towards a real-time system:
 - Existing network providers all have proven realtime capability
 - Number of real-time stations world-wide is rapidly increasing
 - ESOC playing a leading role in the IGS real-time pilot project
- Extension towards (Glonass and) Galileo due to inherent capability in the ESOC software systems
- Challenges from new RINEX and other format changes

Thank you for your attention

