L

e l W B X
ERERRWE |

STATE KEY LABORATORY

i . RMIT UNI ’/ 14 >

| ' UNIVERSITY

Dynamic statistical optimization of GNSS radio
occultation bending angles: an advanced algorithm
and performance analysis results

Ying Li!?2, Gottfried Kirchengast32, Barbara Scherllin-Pirscher?, Robert Norman?, Yunbin Yuan!,
Johannes Fritzer’, Marc Schwaerz?, and Kefei Zhang?

[1] State Key Laboratory of Geodesy and Earth's Dynamics, Institute of Geodesy and
Geophysics (IGG), Chinese Academy of Sciences, Wuhan, China
[2] Satellite Positioning for Atmosphere, Climate, and Environment (SPACE) Research Centre,
RMIT University, Melbourne, Victoria, Australia
[3] Wegener Center for Climate and Global Change (WEGC) and Institute for Geophysics,
Astrophysics, and Meteorology/Institute of Physics, University of Graz, Graz, Austria

Correspondence to liying@asch.whigg.ac.cn

AHNESHIKA N FERELSLHE

State Key Laboratory of Geodesy and Earth’s Dynamics

)

2015/4/22 IROWG4, Melbourne, Australia



Introduction

hll"ll'l.lnlltll'l W

Talm .,

KN E SR N FERELLHE
Lal

State Key Laboratory of Geodesy and Earth’s Dynamics

)\,

2015/4/22 IROWG4, Melbourne, Australia



Outline

1. Background and motivation
2. Aim and objectives
3. Methodology
4. Results

5

.  Summary

References:

1) L1, Y., G. Kirchengast, B. Scherllin-Pirscher, S. Wu, M. Schwaerz, J. Fritzer, S. Zhang, B.A. Carter,
and K. Zhang (2013), A new dynamic approach for statistical optimization of GNSS radio occultation
bending angles for optimal climate monitoring utility, J. Geophys. Res. Atmos., 118, 13022—-13040,
doi:10.1002/2013JD020763.

2) L1, Y., G. Kirchengast, B. Scherllin-Pirscher, R. Norman., Y.B. Yuan, M. Schwaerz, J. Fritzer., and K.
Zhang (2015), Dynamic statistical optimization of GNSS radio occultation bending angles: an

advanced algorithm and its performance analysis, Atmos. Meas. Tech. Discuss., 8, 811-8535,
doi:10.5194/amtd-8-811-2015.

A 8 SR Y ERE S SRS
2015/4/22 IROWG4, Melbourne, Australia ’; ﬁﬁiﬂiiﬁfﬂﬂiﬁﬁ%mﬂff



Background and Motivation

Background

Statistical optimization is to combine a RO observed bending angle profile with a
background profile to provide an optimal bending angle profile, and the weights of
the two types of bending angles are determined by their error covariance matrices:

aSO :ab +Cb(Cb —I_(jo)_1 .(ao _ab)

— The more accurate the error covariance matrices, the better quality of the obtained
optimized bending angles

— Difficult to obtain accurate background and observation error covariance matrices

— Many current simplified estimation of background and observation error covariance
matrices would degrade the accuracy of the resulting optimized bending angles

Motivation: To propose a dynamic approach to estimate background and
observation error covariance matrices accounting for their variations with latitude,
longitude, altitude and time, and use the obtained matrices for the optimal estimation
of bending angles.
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Aim and objectives

Aim:
» To introduce a dynamic statistical optimization algorithm for optimal retrieval of RO

bending angles

Objectives:

» To dynamically estimate background and observation error covariance matrices
accounting for their variations with latitude, longitude, altitude and time.

» Use the dynamically estimated background and observation error covariance matrices in
statistical optimization for optimal estimation of bending angles

» To confirm the long-term stability of the new approach
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Methodology

»The idea of the dynamical estimation of
the background and observation error T j
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L =1 -
k _ _k k k k u k - k
Og = 8y +Cb(Cb +C“) (r.cD uh)

Statistically optimized bending angle aé‘o

altitude and time. Flowchart of the new dynamic statistical optimization algorithm
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Key variables in the estimation of background
uncertainties

July, latitude range: 60°'Sto 70°S
5 15 July,2008 o - i0
70| £ 70- 1k £
! = 4
—_ | 8 [a]
260 5 3% @
© @ 2 6 2
S © = e
£ 50 5 =50 =
© o |5} o
| < a 4 k=
8 = £ <
§40— § = 40- g é
7 “L-_ 30 23
30| & L
zg 20 0
~90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 11 13 15 17 19 21 23 25 27 29 3
Latitude [deg] Day of month [1]
15 July, 2008 July, latitude range: 60'St0 70°S
50 BD T T T T T T T T T T T T T 50
S - S =
2 70 = @
40 2 | eEmsE 405 &
3 Fe Zo
= E2 w60 7 25 : E.c
p— [ k=i 0]
© 30EE 3 F30E 2
o o = [T
= 2o %[ | S
E 55 260 So
[ o € [5) o €
5 2053 & | 20% 3
3 ED Eyp ==
£ 85 S 5
= 23 , 3
100°¢ 100 2
< ©
b [
£ £
280 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 ° 6 8 10 12 14 16 18 20 22 24 26 28 30 32 °

Latitude [deg] Day of month [1]

The upper two panels show the ECMWF forecast-minus-analysis standard deviations and the
bottom panels show the modeled systematic biases of ECMWF analysis bending angles. For
both upper and bottom panels, the left panels show the variation of variables with latitude and
altitude, and the right panels show the variations of variables with day of month and altitude
in the latitude range of 60°S to 70°S .
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Global-mean correlation functions and correlation lengths
of background and observation errors
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»Both background and observation
correlation functions show a near-Gaussian
shape at the main peak, followed by two
negative side peaks, and then generally two
small positive peaks.

» The correlation length of the background
errors is ~0.8 km at 20 km and then
linearly increases to about 6 km at 80 km.

»The correlation length of the observation
errors stays around 0.7—0.8 km in the full
height range from 20 km to 80 km

» Both background and observation
correlation functions and correlation
lengths vary little with day of month

AHNESHIKA N FERELSLHE

State Key Laboratory of Geodesy and Earth’s Dynamics

=
<



Individual bending angle results
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simMetOp event: I-MeS1-ssAnsl-ErrC1-S0e3-000003
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The top, middle and bottom panels show individual bending angle results for simulated MetOp, CHAMP and COSMIC events
respectively. The left panels show the estimated background and observation uncertainties for corresponding RO events, the
middle panels show bending angles profiles obtained from different approaches, and the right panels show the differences of
bending angle relative to reference bending angles. Reference represents ECMWF co-located data, OPSv5.6 represents the
algorithm used in OPSv5.6 software, b-dynamic represents results obtained from using newly estimated background error
covariance matrices only, and dynamic represents the new approach, CDAAC represents data downloaded from CDAAC.
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Statistical bending angle errors of simulated MetOp data

simMetOp Statistics, Global, 15 Jan 2008 simMetOp Statistics, Global, 15 July 2008
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Systematic differences and its standard deviations of statistically optimized bending angle relative to
simulated “true” bending angles of the global ensemble of simulated MetOp events on 15" January and
15t July 2008. Statistics of the OPSv5.6 (black), b-dynamic (blue) and dynamic (red) statistical
optimization algorithms are shown.

» The systematic differences and its standard deviations of bending angles from the dynamic algorithm
are smallest.

» These results for the simulated events are very encouraging and confirm the fundamental capabilities
of the dynamic algorithm
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Statistical bending angle errors of CHAMP and COSMIC

CHAMP Statistics, Global, Jan 2008

CHAMP Statistics, Global, July 2008
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Systematic differences and its standard deviations of statistically optimized bending angle relative to co-located
ECMWEF analysis bending angle of the global ensemble of CHAMP and COSMIC events on January and July 2008.
Statistics of the OPSv5.6 (black), b-dynamic (blue) and dynamic (red), CDAAC (version 2009.2650 for CHAMP
and version 2010.2640 for COSMIC, green), and CDAAC,,, (version 2014.0140 for CHAMP, magenta)
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Statistical refractivity errors of CHAMP and COSMIC
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Systematic differences and its standard deviations of refractivity relative to co-located refractivity profiles from
ECMWEF analysis fields of the global ensemble of CHAMP and COSMIC events on January and July 2008.
Statistics of the OPSv5.6 (black), b-dynamic (blue) and dynamic (red), CDAAC (version 2009.2650 for CHAMP

and version 2010.2640 for COSMIC, green), and CDAAC
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MSL altitude [km]

MSL altitude [km]

Statistical temperature errors of CHAMP and COSMIC

CHAMP Statistics, Global, Jan 2008 CHAMP Statistics, Global, July 2008
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Systematic differences and its standard deviations of temperature relative to co-located temperature profiles from
ECMWEF analysis fields of the global ensemble of CHAMP and COSMIC events on January and July 2008.
Statistics of the OPSv5.6 (black), b-dynamic (blue) and dynamic (red), CDAAC (version 2009.2650 for CHAMP
and version 2010.2640 for COSMIC, green), and CDAAC, ., (version 2014.0140 for CHAMP, magenta)
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1) Developed a daily updated 3-D error fields to dynamically estimate the

2)

3)

4)

Summary

background and observation error covariance matrices accounting for
their variations with latitude, longitude, altitude, and time.

The newly estimated background uncertainties reveal clear variations
with latitude and altitude; the estimated correlations of background
and observation errors reveal near-Gaussian shape at the main peak,
following by two negative side peaks; the correlation lengths of
background errors vary from ~0.8 km at 20 km of altitude to ~6 km
at 80 km altitude, the correlation lengths of observation errors stay
around 0.7—-0.8 km in the complete height range of interest.

Evaluation of the new dynamic approach using simulated MetOp data
show that the new dynamic approach can significantly reduce the
random errors of optimized bending angles compared to the OPSv5.6
algorithm, and promises to reduce systematic errors

Evaluation of the new dynamic approach using observed CHAMP and
COSMIC data show that the new approach can also significantly
reduce the random errors of bending angles, leaves less or about equal
systematic differences; and the quality of the subsequently retrieved
refractivity and temperature profiles is also improved
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