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Research Goals 
What is 2DVAR? Variational Analysis Scheme in the occultation 
plane using a ray tracing observation operator 
 
To serve as a testbed for more comprehensive approaches: 

§  Ionosphere + neutral atmosphere  
§  RO + In situ (e.g. ground-based GPS) 
§  3DVAR, 4DVAR, EnKF 

 
To provide an affordable, rigorous, replicable environment for 
RO-related studies 
 
To improve understanding of issues that are difficult to be 
addressed in 1-d framework: 

§  Spherical asymmetry 
§  Super-refraction & atmospheric ducting  
§  Surface reflection 
§  Atmospheric multipath  



Error 
estimates 

Measurements 
(excess phase) 

A priori 

Individual Components of 2DVAR 

Observation 
operator & 
Optimizer 

In order to avoid error contributors and 
collectors (Abel transform, hydrostatic 
eq., statistical optimization,…) 
Its simple error structure permits: 
specification of accurate dynamic 
observation error and effective QC 



Ray tracing along complete GPS-LEO links 

Trial path ❶ 

Trial path ❷ 

Final path β 

Illustration of ray shooting 

Convergence tolerance < 1 mm 
in positional error at the 
receiving satellite 

The primary observable in GPR RO is phase path, the refractive 
index integrated along the ray path. A complete ray tracing that links 
GPS-LEO satellites replicates the measurement.  



A priori information 
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Empirical models for ionosphere and 
plasmasphere are meant to assist in 
extracting information from RO data, 
in perspective of “better-than-
nothing”.  
It is assumed that the information 
content of RO data is so rich that the 
demand for precise a priori is less.  

Electron density in  
an occultation plane  



The Curved Ray Tracing 

§  We do not have any data for high-
resolution (10-100 meter) 
refractivity field 

§  The ionosphere/atmosphere is 
continuous and varies slowly, and 
so is/does ray’s curvature  

§  However, atmosphere is strongly 
stratified and thus a ray never 
follows a straight line 

§  It is possible to compute ray’s 
curvature locally. Ray’s bending 
effect can be accounted for in 
modeling ray path 

§  CRT (Wee et al., 2010, JGR) uses 
parameterized curves replacing 
straight lines 

§  CRT permits significantly longer 
time steps 

Example of osculating 
circles used to model a ray 
path linking GPS-LEO 



Trace along a ray path (asymmetry) 
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Refractivity Known as ray invariant 

•  Standard RO processing is done in 
1-d framework, which is based on 
the assumption of spherical 
asymmetry.  

•  Spherical asymmetry is notable in 
the ionosphere as well as in the 
lower troposphere.  

•  It exists even without small-scale 
disturbances whenever a ray path 
is aligned latitudinally. 



Real-data assessment of CRT 
Shown is model-observation in excess phase [%] 

OP: Operational ECMWF analysis, RA: ERA40 reanalysis 

Wee and Kuo [2014, AMTD] 



Use of CRT for NWP verification 
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Not everything went that well from the beginning. Sometimes, … 
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Initially, the simulated 
phase showed 
systematic deviations 
from measurement. 
It turns out that this was 
caused by not including 
ionospheric effects in 
the refractive index  



ION-free vs. ION-corrected 
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     Ionosphere-free (Lf) 
•  Hypothetic, obtainable when 

the ionosphere were absent 

•  What we intend to obtain 
from an ideal ionospheric 
correction 

  Ionosphere-corrected (Lc) 
•  What RO actually measures in 

the presence of ionosphere 

•  L1 & L2 are ray traced 
separately and then linearly 
combined 

Lc 
Lf 

•  The presence of ionosphere changes ray path.  
•  Neutral atmospheric effect experienced along 

the path (close to Lc) differs from Lf,  
•  Lc differs from Lf , even if the perfect correction 

along the path were possible 
•  When ionospheric influence is great, even 

ionospheric climatology is useful 

•  In general, the Lc - Lf difference is small 

  

L1 = ρ + I
f1

2 + ε1 ; L2 = ρ + I
f2

2 + ε2

Lc ≡
f1

2L1 − f2
2L2

f1
2 − f2

2



Inclusion of the ionosphere is essential for studying 
atmospheric effect; however,  
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Measured Lc  is so noisy, compared to 
the difference from modeled Lc  
Temporal differentiation (i.e., Doppler) 
doubles the noise level, making it 
difficult to detect the difference even 
compared to Lf  
Rigorous approach and precise error 
estimation are required to relate the 
difference in Lc to that in Lf  
In order to separate the error resulting 
from imperfect ionospheric correction 
(from caused by spherical asymmetry), 
the following studies are conducted: 

•  Noise separation and signal 
detection via dynamic filtering 
and singular spectrum analysis 

•  Dynamic error estimation 
•  Noise-Aware combination 
•  Variational combination 



Quality Control: L1-L2 is not always ionospheric effect 
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²  By having two frequencies available, we can tell a certain feature is realistic or not 
with an increased level of confidence.  

²  This could have been another strength of dual frequency, in addition to the 
ionospheric correction, if L1 and L2 were about the same in their quality 

²  In reality, L2 is so noisy that L1 can be used for QC of L2, instead of cross-validation 
²  Inter-channel coherence is an important measure to detect signal component and to 

isolate noises  

  
L2m ≡ ρm +

f1
2

f2
2 (L1 − ρm)
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  Doppler:  ΔΨ(i) = Ψ(i +1)−Ψ(i)



Dynamic filtering & Inter-channel coherence 
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Cxy =
| Gxy |2

GxxGyy

Gxy : cross-spectral density

Gxx : autospectral density

1/f 

Multitaper PSD allows us to detect noise floor (3 Hz for L1 and 1.5 Hz for L2) 
for individual soundings.  
Coherence in the range of noise is low.  



Coherence is a key measure for signal detection 
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L1 & L2 deviate from model and from each other starting from 0.4 Hz 
However, Lc stays close to ECMWF and the coherence in the range is high   
The early deviation of L1 & L2 from ECMWF is due to Ionospheric effect  
Inter-channel coherence is thus a reliable measure for signal detection 



Information content of Doppler 

Average magnitude of Dopplers 



SNR 
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Above 40 km, Lc noise exceeds the absolute magnitude of neutral 
atmospheric effect, and is greater than ionospheric effect throughout 
the entire height range. Hopeless. 
L1 seems still useful up to 50 km even for neutral atmosphere. How 
can we make good use of this? 



Dynamic observation error 

Data assimilation and retrieval 
algorithms require accurate estimates 
of observation error. However: 

§  These method often use static observation error 
§  Noise level of RO data varies significantly from 

one occultation to another, and L2 noise, 
relative to L1 noise, also changes greatly 

§  Use of a static observation error is thus 
suboptimal  

§  Dynamic filtering, SSA, and signal modeling 
provide insight into measurement noise and 
allows us to characterize them  

§  Dynamic (occultation-specific) observation error 
has great potential to strengthen any 
uncertainty-based state estimations (e.g., data 
assimilation methods and retrieval schemes) 
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An example of dynamic error 

Doppler 
noise 
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Noise-Aware Combination (NAC) 

   

The observation eqs.

L1 = ρ + I
f1

2 + ε1 ; L2 = ρ + I
f2

2 + ε2

Variable transform using an N.A. model

!L1 =
f1
f2

L1 − ρm( ) = I
f1f2

+
f1
f2

ε1 + εm( )
!L2 =

f2
f1

L2 − ρm( ) = I
f1f2

+
f2
f1

ε2 + εm( )

Seek for the optimal combination

I *

f1f2
= a !L1 + (1− a) !L2

When ε1ε2 = ε1εm = ε2εm = 0, the solution found to be

I *

f1f2
=

f2
f1

⎛
⎝⎜

⎞
⎠⎟

2

ε2
2 + εm

2( )− εm
2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
!L1 +

f1
f2

⎛
⎝⎜

⎞
⎠⎟

2

ε1
2 + εm

2( )− εm
2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
!L2

f1
f2

⎛
⎝⎜

⎞
⎠⎟

2

ε1
2 + εm

2( )− 2εm
2 +

f2
f1

⎛
⎝⎜

⎞
⎠⎟

2

ε2
2 + εm

2( )

NAC (Wee and Kuo, 2013, JGR) is an 
example of L1 and L2 discrimination 
§  Statistical optimization is needed to 

cope with noise amplification in the IF 
linear combination. Because IF 
combined data is so noisy, a heavy 
weighting must be given to a priori. 
This is a major error source 

§  L1 and L2 differ in the quality and so 
don’t treat them equally 

§  Instead, discriminate them in the 
combination by giving a bigger 
weighting to L1 and smaller to L2 

§  Combines L1 and L2 data with 
background, achieving minimum 
error variance (rather than 
amplifying noise) 



Variational combination of multi-freq data 

Background Observation 

   
J(x) = 1

2
x − xb( )T

B−1 x − xb( ) + 1
2

yo −H(x){ }T
R−1 yo −H(x){ }

   

x2M = (I1,I2,I3,...,IM , ρ1,ρ2,ρ3,...,ρM )T

B2M×2M =
BI

Bρ

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
     Combination

B =

Bne

BT

Bq

Bps

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

1DVAR

    

y2N = (L1
1,L2

1 ,L3
1 ,...,LN

1 ,L1
2,L2

2 ,L3
2 ,...,LN

2 )T

R2N×2N =
R1

R2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

; εα 
1
rL

+ 1
rG

⎛

⎝⎜
⎞

⎠⎟
εΔψ

Δθ

H1 = ρ + I
f1

2 ; H2 = ρ + I
f2

2 + interpolation

Seeks the optimal x that replicates the L1 and L2 measurements as closely as 
possible while satisfying other constraints imposed. Inferring atmospheric states from 
noisy measurements is ill-posed. However, adjusting model states to better replicate 
measurements is a well-posed problem. Wee and Kuo [2014, JGR, in press] 
 

§  Additional frequencies (e.g. L5) can be easily added 
§  Classical linear combination for triple-frequency is a bit 

complicated and increases noise level even more 
§  Based on the principle of minimum variance, VAR further 

reduces error variance when extra data are added, virtually 
without any extra cost 



Verification with radiosonde observations 

10

15

20

25

30

35
H

ei
gh

t [
km

]

0.3 0.6 0.9 1.2 1.5
N [%]

a

10

15

20

25

30

35

0.2 0.4 0.6
p [%]

b

Forecast
Analysis
Conventional
Variational

10

15

20

25

30

35

1 2 3
T [K]

c

Surprisingly, VAR in 1-d framework produces results better than ECMWF 
analysis, even if the verifying radiosonde data are assimilated into DA 
system; whereas RO data are independent from sonde data: 
§   In methodological point of view, 1DVAR can’t compete with the state-of-the-art 
4DVAR system of the ECMWF 
§   On top of that, ECMWF analysis was made by assimilating observations 
available from all other platforms, including the radiosonde data used here as 
verification 

Analysis & forecast refer to operational ECMWF analysis and 24-h forecast  



How VAR can outperform 4DVAR? 
§  L1 data are so good and VAR can make good use of it. VAR is able to to 

discriminate L1 and L2 in view of data quality without causing systematic error in 
the resulting ionospheric and atmospheric parameters. If everything works out, in 
principle, VAR can achieve an error variance lower than L1’s 

§  By combining multiple frequencies with background directly (instead of using pre-
combined data), noise amplification due to linear combinations is avoided. 

§  Bypassing statistical optimization, the error caused by the process  is avoided.  

§  By using Phase and Doppler, reliable dynamic error can be provided. Effective QC 
is possible.  

§  Measurement errors are minimally correlated in time and space 

§  It is difficult to quantify the importance of ionospheric background for now, but 
even IRI seems useful 


