Outstanding Issues Concerning GPS RO Measurements in the Lower Troposphere

Chi O. Ao¹, Byron A. Iijima¹, Anthony J. Mannucci¹, Thomas K. Meehan¹, Feiqin Xie^{1,2}

¹ Jet Propulsion Laboratory, Caltech, Pasadena, CA, USA ² JIFRESSE, University of California, Los Angeles, CA, USA

> March 28, 2012 IROWG2, Estes Park

© 2012 California Institute of Technology. Government sponsorship acknowledged.

- 1. Negative Refractivity (N) bias
- 2. Depth penetration
- 3. Retrieval nonlinearity (effect of random noise)

- 1. Negative Refractivity (N) bias
- 2. Depth penetration
- 3. Retrieval nonlinearity (effect of random noise)

Xie et al., GRL, 2010

Causes of Negative N-Bias

- 1. Critical-refraction (CR) (aka super-refraction or ducting)
 - When dN/dz < 10^6/R ~ -157 per km, there is no unique refractivity solution given the bending angle profile.
- 2. Negative bending angle bias
 - Insufficient tracking depth: The largest bending angle measurements (corresponding to lowest LSA) were not recorded.
 - Noise affecting low LSA data.

Critical Refraction vs. Insufficient Tracking Depth

CR Example from COSMIC-RAOB Collocation

Xie et al., GRL, 2010

1. Negative Refractivity (N) bias

- 2. Depth penetration
- 3. Retrieval nonlinearity (effect of random noise)

Minimum Altitude Based on CT Amplitude

Cutoff heights with current algorithm

correlated with water vapor abundance

Zmin gets better with higher SNR, up to a point

30 S-30 N JJA 2007

Negative Refractivity (N) bias
Depth penetration

3. Retrieval nonlinearity (effect of random noise)

Key Questions

- Can the results from Sokolovsky et al. 2010 be reproduced using JPL retrieval system? (Algorithm dependence)
- How does the bias vary geographically?
- Given an accuracy requirement for N, what is the desired SNR?
- Can we simulate this effect with end-to-end simulations?
- What filtering/smoothing method (if any) works best in reducing the bias?

Additive Noise

RO Simulations with LES Atmosphere (From George Matheou, JPL)

Additive Noise: 2D Simulations

Zonal N vs Lat

Zonal N vs SNR

- ECMWF (interpolated to COSMIC loc) shows similar SNR dependence to COSMIC!
- This can only be due to sampling differences between high and low SNR occultations.
- Could sampling bias account for the observed low SNR bias in COSMIC?

Distribution of COSMIC OCC

Summary

- Most of the negative N-bias below 2 km is due to critical refraction that occurs mainly over the stratocumulus region. External information is needed to constrain the solution.
- Profile penetration in the lower 2 km over the tropics is still an issue. Higher SNRs and larger bandwidth should help.
- We did not find strong evidence of a positive bias at 3-4 km due to low SNR.