

RO Instrument Design Considerations for the New GNSS Signals

IROWG-2 Workshop Estes Park, Co USA, 2012

Contents:

- The present: MetOp-GRAS
- The future: GRAS-2
- New GNSS Signals: Galileo
- RO simulation results
- Conclusion

Magnus Bonnedal Anders Carlström Thomas Lindgren Jacob Christensen

GNSS Receiver Development

RUAG

RUAG Space

SLTA (km)

GRAS Performance

Characteristics:

- 650 occ/day
- Ultra stable frequency reference < 1e-12</p>
- Wide coverage high gain antennas
- Excellent RFI rejection

Range model performance

OL sampling at 1 kHz (high observability)

100 50 50 SLTA [km] -50 -100 -100 -50 -40 -30 30 40 50 -20 -10 -30 Range model error (m)

Doppler model performance

Doppler measurement performance

RUAG

GRAS-2 Performance

Characteristics:

- 1300-2400 occ/day
- Ultra stable frequency reference < 0.5e-12</p>
- Wide coverage high gain antennas
- Open loop sampling for continuous measurements

Requirements:

GPS L1, L5

GALILEO E1, E5

COMPASS

GLONASS CDMA

 $0.5 \ \mu rad$ bending angle accuracy

Nominal data:

- Mass: 8 kg
- Power: 25 W
- Data rate: 200 kbps 1 Mbps

GRAS Experience

RUAG Space

Galileo Signals

- Signals of particular interest for GRAS-2:
 - E1 (CBOC) data 250 Hz (-B) and pilot (-C)
 - E5 (BPSK 10 MHz)
- Cross-correlation between signals varies over time due to the relative motion between them.
- Experience from GRAS is that cross-correlation interference may be up to 5 dB above thermal noise, interfering with the acquisition process.

RUAG

E1 CBOC-C cross-correlation

0

1

2

Relative code offset (us)

- Cross-correlation between Galileo E1 CBOC (B and C):
 - -24 dBc peak relative to signal being tracked (B or C) (~3 dB better than GPS C/A)
 - -38 dBc average (~6 dB better than GPS C/A)

RUAG

Galileo Signals: Bending Angle Accuracy

- RMS budget at 35 km
- Interference between Galileo/GPS/Compass/Glonass signals accounted for
- Signal power increases (no codeless tracking)
- More co-channel interference
- GNSS clock improvements

Budget Parameters	Metop-GRAS		Galileo signals Pilot only		Galileo signals Pilot + Data	
Signal component	L1 C/A	L2 P(Y)	E1c	E5a-Q	E1b,c	E5a-I,Q
Received signal power at lower frequency (dBm)	-115	-119	-118	-119	-115	-116
Noise and interference power density (dBm/Hz)	-171	-173	-168	-171	-168	-171
C/No (dBHz)	55	47	49	50	52	53
GNSS Allan deviation @ 1 s gate time	2e-12		1e-12		1e-12	
USO Allan deviation @ 1-10 s gate time	1e-12		1e-12		1e-12	
LO phase noise at 1 Hz offset (dBc/Hz)	-55		-55		-55	
Bending angle accuracy budget						
Thermal Noise Error (mm/s)	0.70		0.84		0.59	
GNSS Allan Deviation Error (mm/s)	0.67		0.35		0.35	
USO Allan Deviation Error (mm/s)	0.53		0.57		0.57	
LO phase noise error (mm/s)	0.30		0.33		0.33	
Total Doppler Meas. Error (mm/s)	1.14		1.13		0.96	
Bending angle Doppler sensitivity (urad mm ⁻¹ s)	0.40		0.40		0.40	
Total Bending Angle Meas. Error (urad)	0.46		0.46		0.39	

7

RO Simulator Environment

Objective:

(EUMETSAT Study)

RUAG

- Relate instrument characteristics to bending angle performance.
- Establishing GRAS-2 acquisition and tracking strategies.
- Validating S/W patches for GRAS enhancements.

Simulation Model Results

(ESA study)

GRAS Simulation

RUAG Space

IROWG-2 Workshop 2012, Estes Park, Colorado

GRAS Data

Simulation model results

GRAS Simulation

GRAS-2 Simulation

RUAG Space

GRAS Instrument Simulations

GRAS Simulation

GRAS Data

RUAG Space

GRAS Instrument Simulations

GRAS Simulation

GRAS-2 Simulation

RUAG Space

- GRAS-MetOp continuous to provide valuable experience for the GRAS-2 instrument development
- New GNSS signals provide new opportunities but is also a source of increased interference in the GNSS bands
- Improved simulation tools provide realistic atmosphere cases for validating the GRAS-2 tracking principles