Analysis of RO data retrieved from the Wigner distribution function

Kent B. Lauritsen (*Danish Meteorological Institute, Copenhagen, Denmark*) Michael E. Gorbunov (Obukhov Institute for Atmospheric Physics, Moscow, Russia) Stephen S. Leroy (School of Engineering and Applied Sciences, Harvard University, MA)

<u>Reference</u>: M. E. Gorbunov, K. B. Lauritsen, S. S. Leroy: Wigner distribution function as a time-frequency joint representation of radio occultation signals, Radio Science, Vol. 45, RS6011, doi:10.1029/2010RS004388 (2010);

Part of this work was carried out under the ROM SAF (Radio Occultation Meteorology Satellite Application Facility) processing center under EUMETSAT

Multipath example

Sliding Fourier spectrum of u(t)

2D sliding Fourier spectrum of u(t) mapped to (BA,IP) space

Example: COSMIC data with sharp BA structure at the PBL

Basic idea

Rotations in phase space by angle α

Different projections of ray manifold

Definition of $W(x,\xi)$

Energy density constraint from tomographic projections:

$$\iint W(x,\xi) \,\delta(x\cos\alpha + \xi\sin\alpha - y) \,dx \,d\xi = \left|\hat{\varphi}_x^{[\mu]}(y)\right|^2$$

FIO operator rotating $u(t)$ the angle α

Analytical solution:

$$W(x, z) = \frac{k}{2\pi} \int e^{ikzs} u(x + z) u^*(x - z) ds$$

Solution coincides with the <u>Wigner distribution function</u> introduced by E. P. Wigner in 1932 in quantum mechanics;

Previous applications of WDF and other time-frequency joint representations: Ville, Szu, Cohen;

IROWG-2

Kent B. Lauritsen

Properties of $W(x,\xi)$

Properties:

- W is always real
- W can be positive and negative (pseudo-density)
- W is in general positive near the ray manifold with (quantum) small-scale oscillations
- W contains the full information about u(t)
- W has no preferred direction or coordinates

Consequences:

- W is a global integral transform => <u>high resolution</u>
- W can identify multipath in the presence of strong horizontal gradients

WOP simulation 1

WOP: Wave Optics Simulation

WOP simulation 2

WOP simulation 3: Windowed W

-> Different convolutions with Gaussian weights in order to reduce quantum oscillations (right: W)

COSMIC case 1 (non-tropical)

COSMIC case 2 (tropical)

WDF Retrieval

Bending angle

$$\varepsilon(p) = \int \varepsilon' w(\varepsilon', p) d\varepsilon' / A(p)$$

Amplitude

 $A(p) = \int w(\varepsilon', p) d\varepsilon'$

where w(ϵ' , p) is the WDF spectrum.

Reference: Sokolovskiy, Radio Science (2001)

COSMIC (1 Jan 2007)

COSMIC (1 Jan 2007)

GRAS (30 Sept 2007)

GRAS (30 Sept 2007)

Statistics

The figures show O-B/B statistics for bending angle & refractivity

WDF: Wigner retrieval

CT2: CT2 wave optics retrieval

WDF and CT2 for COSMIC data

IROWG-2

COSMIC: WDF BA

COSMIC: CT2 BA

IROWG-2

22

COSMIC: WDF and CT2 BA

IROWG-2

COSMIC: CT2 N

COSMIC: WDF N

Conclusions

- The Wigner distribution function (WDF) maps a 1D wave function to a 2D timefrequency representation in phase space similar to a radio holographic analysis.
- Examples and simulations for COSMIC and GRAS RO data show that WDF allows for a sharp localization of the details of bending angle profiles.
- Statistical analysis of bending angles and refractivities obtained by WDF and CT2 are in agreement.

Fin

GRAS RS data: Oct 2007 smooth BA

Kent B. Lauritsen

GRAS RS data: Oct 2007 REF

IROWG-2

29

WOP simulation 4

left. strong horizontal gradients

right: realistic model for turbulent fluctuations added

COSMIC case 3 (tropical)

COSMIC case 4 (tropical)

COSMIC (1 Jan 2007)

IROWG-2

GRAS (30 Sept 2007)

