

IROWG Workshop 2012 Estes Park, Colorado

Ionospheric Signatures in Radio Occultation Data

Anthony J. Mannucci¹ Chi Ao¹ Byron A. lijima¹ E. Robert Kursinkski²

1. Jet Propulsion Laboratory, California Institute of Technology 2. Broad Reach Engineering

> Session 6 "lonosphere" Friday March 30, 2012

© 2012. All Rights Reserved.

- 1. Motivation
- 2. Single Frequency Method
 - Testing phase using COSMIC
- 3. Summary and Conclusions

The Radio Occultation Data Set

IROWG Workshop 2012

3

Achieving a Climate Record to 1995

4

- Overcome limitation of the data: only one GPS frequency available, non-prime periods
- Develop a method of calibrating ionosphere delay that uses a single-frequency
- Reprocess GPS/MET 1995-1997 dataset using single frequency
- Philosophy: monitor latitudinal and diurnal signatures

See also:

de la Torre Juárez et al., International Journal of Remote Sensing, 2004.

Single-Frequency Processing Method

Ionospheric refractive index for phase and range signal types

$$N_{Phase} = 1 - \frac{40.3n_e}{f^2}$$

Subtract and
$$N_{Range} = 1 + \frac{40.3n_e}{f^2}$$

Perform low-
order fit.

Ionospheric Estimates of Delay

- Calculate CA-L1 (range phase observable)
- Fit linear or low-order polynomial smoothing
- Correct L1 phase with polynomial
 - Not bending angle
- Perform retrieval
- Partition results according to diurnal signature and other factors

Examples of Fitted Ionospheric Bending Angle

Line Fit Parameters Vs Local Time

Residuals to the Linear Fit

Refractivity Retrieval Error Linear Fit Vs Dual-Frequency Correction

Small Scale Structure & Data Characterization

March 30, 2012

IROWG Workshop 2012

Small Scale Structure E-Region

- Monitor phase and amplitude fluctuations on a per-profile basis
- Aggregate according to fluctuation intensity and other factors
- Compare retrieved bending angles between affected and unaffected profiles
- Determine upper bound of bias as a function of fluctuation intensity
 - Use profile altitude to reduce bias

- We can extend robustly the radio occultation data record by 6 years (+60%) by developing a singlefrequency processing method for GPS/MET data
- We will produce a calibrated data set with profile-byprofile data characterization to determine robust upper bounds on ionospheric bias
- Part of an effort to produce a calibrated RO data set addressing other key error sources such as upper boundary initialization
- Planned: AIRS-GPS water vapor cross validation (water vapor climatology and trends)