Profiling the atmosphere with the airborne RO technique using GPS signals recorded in open-loop mode

Paytsar Muradyan, Jennifer S. Haase, Ulvi Acikoz*, James L. Garrison*, Feiqin Xie**

Department of Earth and Atmospheric Sciences, Purdue University *Dept. of Aeronautics & Astronautics Engineering, Purdue University ** Joint Institute for Regional Earth System Science & Engineering, University of California

Aknowledgements

HIAPER UCAR Subcontract S05-39696 NSF grant SGER-0802887 Schlumberger Foundation Brian Ventre, Tyler Lulich and Brian Murphy

IROWG-2 March 28-April 3, 2012

Airborne Radio Occultation (RO)

- Airborne RO measurements can contribute to understanding tropospheric moisture
 - Dense measurements of meteorological targets
 - Vertical resolution ~200m
 - Insensitive to clouds and precipitation
- Side-looking GPS antennas track setting and rising satellites
- GPS signal experiences refractive bending and delay

ERSI

Problem: conventional closed loop tracking receivers have data gaps **Objective:** evaluate the performance of open-loop tracking

Reflected signals for ocean winds and soil moisture

Red: Port antenna Blue: Starboard antenna

- 15.5 km maximum flight altitude
- High precision Applanix POS/AV 510
 GPS/INS navigation system
- Dual-frequency geodetic quality receivers (NetRS)
- 10 MHz GNSS Recording System (GRS)

- High-gain narrow field of view antennas
- Peak Gain: 7.7 dbic L2
 - 9.4 dbic L1
- Elevation: -3dB +/- 18°; -10dB +/- 30°
- Azimuth: -3dB +/- 25°; -10dB +/- 40°

Excess Doppler from NetRS Receivers

ERS

- Limited by signal fading and multipath at low elevation angles causing the tracking loops in the conventional NetRS GPS receiver to lose lock
- Data gaps

OL Tracking of Setting and Rising Occultations

Determine the presence of signals and rough estimates of Doppler frequency

Generate a replica of the incoming signal. Refine the rough estimates of code delay and Doppler from the acquisition

Code delay is initialized using that of obtained in CL. Using a geometric Doppler model, steer the phase and frequency of the locally generated replica signal

- Need for navigation data bits: data bits (50Hz) modulated on the I&Q phase components
- Challenge for rising occultation: signal power is low in the beginning => cannot be acquired until satellite rises to some elevation
- "Backward OL tracking" (Acikoz 2011)
 - Rising satellite is acquired and tracked with CL tracking when signal power is high enough
 - OL tracking is initialized the same way as in setting occultation case but in reverse time

Closed-loop vs Open-loop (OL) Receiver

• Significant improvement over conventional receivers

Occultation Geometry

15 FEBRUARY 2008 FLIGHT

- Tangent point drift to t_1 t_2 t_i
 - 5 hour flight
 - 13.5 km altitude
 - 19 occultations when aircraft was at flight level
 - 10 setting
 - 9 rising
 - COSMIC:
 - 5 occultations/5 hours

URDUE

S

- Lat = [27.8324 27.7500]
- Lon = [-84.750 -84.6405]

OL profiles: Setting occultation

15 February 2008 flight: Occulting GPS satellite PRN13 and high elevation satellite PRN02

Hours since 2008-02-15-00:00

Refractivity difference (%)

OL profiles: Rising occultation

OL tracking has been implemented for rising occultations, with equivalent quality to setting occultations (Acikoz, 2011)

15 February 2008 flight: Rising GPS satellite PRN22 and high elevation satellite PRN29

Hours since 2008-02-15-00:00

Rcurve = radius of local curvature = 6380.44 km

Summary for 9 occultations

PRN	Setting/	Port/	Lowest	Lowest	
	Rising	Starboard	Elevation	Geometric	
			(deg)	height (km)	א t
05*	Setting	Port	-3.83	2.974	Ĭ
09	Setting	Starboard	-4.37	1.044	
12	Setting	Port	-3.98	2.353	
15	Rising	Port	-3.78	3.386	
13	Setting	Port	-4.44	0.562	
22	Rising	Port	-4.06	0.956	
26	Rising	Port	-4.19	0.952	
29	Rising	Starboard	-4.41	0.612	
30	Setting	Port	-4.46	0.869	

* Airplane turn truncated the profile early

All rights reserved

cosmic_occt_atmprf.lonn (deg East)

Number predicted ≠ observed

Most important factors for missed occultations:

- Lack or poor quality of navigation data bits
 - 5 out of 19 occultations
 - Current global coverage is 99% (F. Zus 2011)
- Aircraft turns
 - 3 out of 19 occultations
- One occulting satellite was not acquired in CL tracking, which is required

to align navigation data bits to initialize OL tracking

• One occultation was missed since GRS recording was stopped during the occultation

Conclusions

- Quality or absence of navigation data bits and the aircraft turns were the most important factors affecting the number of airborne RO profiles
- With an improved global network providing data bits, 2.8 occultations per hour can be achieved on a straight flight, majority to 1 km height, rising and setting.
- The retrieved refractivity profiles currently have a ~6% N bias and ≤ 1.5% STD relative to ECMWF YOTC reanalysis
- Fourier Spectral Inversion will be needed to improve results (F. Xie IROWG-2 poster presentation)
- B. Murphy will present results from the 2010 PREDICT campaign for investigating the initiation of tropical cyclones at the AMS conference on Hurricanes and Tropical Meteorology in April