

ARSCIISvs

Quantification of Structural Uncertainty in Climate Data Records from GPS RO

A.K. Steiner ¹, D. Hunt ², S-P. Ho ², G. Kirchengast ¹, A.J. Mannucci ³, B. Scherllin-Pirscher ¹, H. Gleisner ⁴, A. von Engeln ⁵, T. Schmidt ⁶, C. Ao ³, S.S. Leroy ⁷, E.R. Kursinski ⁸, U. Foelsche ¹, M. Gorbunov ^{4,9}, Y-H. Kuo ², K.B. Lauritsen ⁴, C. Marquardt ⁵, C. Rocken ², W. Schreiner ², S. Sokolovskiy², S. Syndergaard⁴, S. Heise⁶, and J. Wickert⁶

¹ Wegener Center for Climate and Global Change (WEGC) & IGAM/IP, Univ. Graz, Austria
 ² COSMIC Project Office, UCAR, Boulder, CO, USA
 ³ Jet Propulsion Laboratory (JPL), California Institute of Techn., Pasadena, CA, USA
 ⁴ Danish Meteorological Institute (DMI), Copenhagen, Denmark;
 ⁵ EUMETSAT (EUM), Darmstadt, Germany;
 ⁶ German Research Centre for Geosciences (GFZ), Potsdam, Germany
 ⁷ School of Engineering and Applied Sciences, Harvard Univ., Cambridge, MA, USA
 ⁸ Institute of Atmospheric Physics, Univ. of Arizona, Tucson, AZ, USA

⁹ Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, Russia

IROWG-2 Workshop, March 28 – April 3, 2012, Estes Park, CO, USA

andi.steiner@uni-graz.at

- Background
- Centers and their processing
- Data and study setup
- Method
- Results
- Conclusions and outlook

 Aim: Quantifying the structural uncertainty of RO data provided by different RO processing centers

Background:

- 1st round study by Ho et al. (JGR, 2009)
- Intercomparison of refractivity climatologies
- CHAMP 2002–2006
- 4 centers JPL, GFZ, UCAR, WEGC
- Structural uncertainties amongst climatologies of different RO processing centers are <0.03% per 5years for refractivity trends in large scale means

Data and Study Setup

- 2nd round intercomparison studies
- Profile to profile comparison (PPC) provided by RO processing centers (study by S-P. Ho, JGR subm. Feb 2012)
- Intercomparison of zonal monthly mean climatologies (MMCs)
- Results of MMC intercomparison presented at OPAC 2010, Graz and at 5th F3C-ICGPSRO 2011, Taiwan
- Helped to improve data at different centers
- Reprocessed data were provided

Centers and Processing

Processing Center	Data version	Processing Steps ^a
DMI Copenhagen, DK	OCC_20.6.688, FM_2.1 (UCAR/CDAAC 2009.2650)	UCAR phase & orbit data Geometrics optics (GO), CanonTransf (CT)<25 km Optimization of α with MSIS-E90 (>40 km)
EUM Darmstadt, D	YAROS 0.1(Beta) – ROTrend_5.1_Prof (UCAR/CDAAC 2009.2650)	UCAR phase & orbit data GO Optimization of α with CIRA-MSISE
GFZ Potsdam, D	POCS ATM vers.006	Excess phase single differencing GO, Full Spectrum Inversion (FSI) <15 km Optimization with MSISE-90 (>40 km)
JPL Pasadena, CA, USA	v2fo_10Kp1N	Excess phase double differencing CT Exponential function fit of α at 40–50 km, extrapol.
UCAR Boulder, CO, USA	2009.2650	Excess phase single differencing GO, Full Spectrum Inversion in troposphere Optimization with NCAR climatology
WEGC Graz, A	OPSv5.4 (UCAR/CDAAC 2009.2650)	UCAR phase & orbit data GO Statistical optimization >30 km with ECMWF forecasts & MSIS-E90 above

^a All centers: Ionospheric correction of bending angles and dry air retrieval but different smoothing routines and quality control

Data and Study Setup

- CHAMP record September 2001 to September 2008
- Resolution: 5-degree zonal means, monthly means
- Latitude zones: Tropics (TRO) 20°N–20°S Northern/Southern mid-latitudes (NML/SML): 20°N/S–50°N/S Northern/Southern high-latitudes (NHL/SHL): 50°N/S–90°N/S
- Altitude range: 8–30 km (200 m)
- Altitude layers: 8–12 km (Upper Troposphere UT) 12–18 km (Tropopause TP) 18–25 km (Lower Stratosphere LS) 25–30 km
- Focus region: Tropical UTLS
- Parameters^a:

Bending angle $\alpha(z_a)$ Refractivity N(z) Dry pressure $p_d(z)$, Dry geop. height $Z_d(z_p)$ Dry temperature $T_d(z)$

^a msl altitude z, impact altitude z_a

 $(z_a = \text{impact parameter} - \text{radius of curvature} - \text{geoid undulation}),$ pressure altitude $z_p(p)[m]=(7000 \text{ m}) \times \ln(1013.25 \text{ hPa/p[hPa]})$

- MMCs based on provided profiles
- Sampling error estimation based on ERA-Interim for N, p_d, Z_d, T_d
- Subtraction of sampling error: "de-sampled" 5-deg MMCs
- MMCs and de-sampled MMCs
- Mean difference of each center to the all-center mean
- Anomaly time series mean annual cycle removed
- Anomaly difference time series subtracting the all-center mean absolute anomaly difference for Z and T (anomaly – all-center mean) fractional anomaly difference for α, N, p (anomaly – all-center mean)/ all-center mean*100 6 centers, 5 parameters, 36 lat-bands/110 altitude levels, 5 lat-zones/4 altitude layers
- Variability which is common to all data sets is removed, remaining deviations are due to different processing methods
- Trends of the anomaly difference time series
- All-center mean trend and standard deviation
- Structural uncertainty is estimated from the spread of anomaly difference trends and the standard deviation of the all-center mean trend

Number of Occultation Events

- No of events per 5-deg bin
- depends on quality control
- GFZ above average
- WEGC below average

- Mean difference of each center to the all-center mean (top to bottom)
- for 09/2001 to 09/2008
- (a) bending angle and
- (b) refractivity ±0.1% up to ±0.3% above 20km at SHL below 10 km in tropics
- (c) pressure ±0.1% <20 km ±0.4% at 30 km
- (d) geopotential height 5–10 m <20 km ~25 m at 30 km
- (e) temperature ±0.1 K <20 km ~0.5 K at 30 km

- Anomaly difference time series & trends
- (a) refractivity
 - (b) refractivity where sampling error was subtracted
- UT (left) and LS (right) five zonal regions (top to bottom)

Refractivity diff. trends: ±0.03% per 7 years larger at SHL

- Anomaly difference time series & trends
- (a) temperature
 - (b) temperature where sampling error was subtracted
- UT (left) and LS (right) five zonal regions (top to bottom)

Temperature diff.trends: UT: near zero ±0.1 K per 7 yrs at SHL LS: ±0.2 K per 7 yrs larger at SHL

- All-center mean trends and standard deviation
- for the period 09/2001 to 09/2008
- (a) bending angle
 - (b) refractivity
 - (c) pressure
 - (d) geopotential height
 - (e) temperature

Standard deviation: bend.angle: <0.05% refractivity: <0.04% pressure: 0.03% to 0.05% 0.2% to 0.4% at HL, LS geop.Height: 2 m to 3 m 10 m to 20 m at HL, LS temperature: 0.02 K in UT 0.1 K in LS 0.2 K to 0.7 K >25 km

- Mean standard deviation of trends per 7 years^a at 8–25 km at 50S to 50N:
 0.02% for bending angle
 0.02% for refractivity
 0.03% for pressure
 <3 m for geop. height
 0.05 K for temperature
- Climate change signal detection study for RO (*Lackner et al.*, 2011)
 ~15 m/decade geop.height increase
 ~0.3 K/decade warming in UT
 ~0.6 K/decade cooling in LS tropics
 ~0.07 K/decade LS struc.Unc.

GCOS stability requirement for air temperature (GCOS, 2006) 0.05 K/decade UT 0.1 K/decade LS

^aFor different timescales the given (random) uncertainties scale as $\sigma (\Delta t / \Delta t_{target})^{3/2}$, where Δt is 7 years and Δt_{target} is the target time [*Leroy et al.*, 2008] (e.g., $\sigma = 3$ m/7 yr translates to an error of 2.5 m/10 yr for a 10-year time series)

Conclusions and Outlook

- Estimation of structural uncertainty from spread of anomaly trends and finally from the standard deviation of the all-center mean trend
- Structural uncertainty of RO CHAMP data from 6 processing centers
- Low structural uncertainty: tropics to mid-latitude UTLS, 50S to 50N below 25km
- GPS RO can be used for climate trend assessment within this region meeting GCOS requirements
- Higher structural uncertainty above 25 km and at high latitudes
- Reflect different bending angle initialization approaches including different high altitude background information
- RO processing systems undergo continuous development
- Further improvements are expected enlarging the range of low uncertainty

THANK YOU !

