

Evaluation of Climate Models Using RO Observations – Tropical Convection Regimes in the HadGEM Model

A.K. Steiner ¹, B.C. Lackner ¹, M. Schwärz ¹, M.A. Ringer ², G. Kirchengast ¹

¹ Wegener Center for Climate and Global Change (WEGC) & IGAM/IP, Univ. Graz, Austria ² Met Office Hadley Centre, Exeter, U. K.

IROWG-2 Workshop, March 28 – April 3, 2012, Estes Park, CO, USA

andi.steiner@uni-graz.at

- Motivation and background
- Data sets
- Comparison method
- Results
 - classification
 - distribution
 - differences in temperature
- Conclusions and outlook

 Spread of climate model uncertainty arises mainly from differences in feedback processes (*IPCC* 2007).

Motivation

- Water vapor feedback constitutes the strongest feedback followed by the negative lapse rate feedback (Soden and Held 2006).
- The net effect of the water vapor/lapse rate feedback results in the amplification of a warming.
- Change is largest in the tropical middle and upper troposphere and is not yet well understood.
- "Given the complexity of processes controlling tropical humidity a combination of modeling and observational studies are needed to assess the reliability of model water vapor feedback (IPCC 2007)".

- Evaluation of climate model data with RO observations
- First study using Met Office Hadley Centre HadGEM2 model
- Focus on processes in the tropics, convection regimes
- We take the approach of classification of moist and dry tropical regimes through distinction between dynamical up- and downdraft regions.
- Regions of rising motion (upper level divergence) are closely tied to regions of deep convection.
- Regions of sinking motion (convergence) represent mean clear sky conditions (*Lau et al.* 1997).
- For the classification of vertical motion (ascending/descending air) associated with large-scale tropical circulation we use the pressure vertical velocity at 500 hPa (ω500) and Sea Surface Temperature, following *Ringer and Allan* (2004).

RO observations

temperature profiles from multiple satellites CHAMP, SAC-C, GRACE-A, F3C 200 m vertical grid Wegener Center processing OPSv5.4 *www.wegcenter.at/globclim*

HadGEM2 AMIP model (CMIP5)

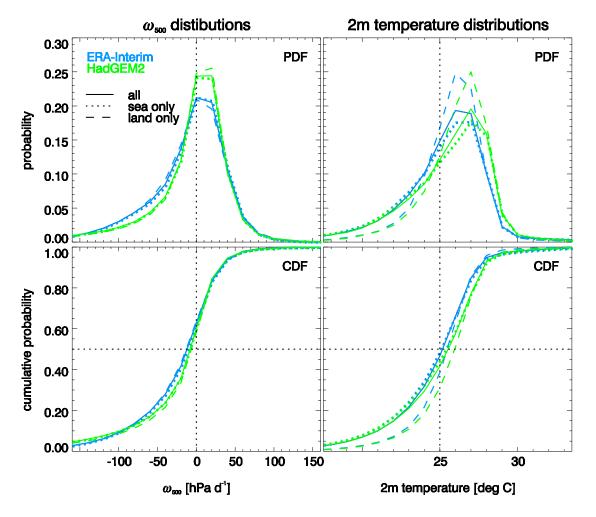
pressure vertical velocity $(\omega 500) - daily means,$ near surface temperature (Ts) – daily means air temperature – 6 hourly model resolution:1.25 lat x 1.875 lon, 38 levels *ftp.badc.rl.ac.uk*

ERA-Interim

daily mean ω500 and 6 hourly 2m-temperature (T2m) proxy for RO to classify the profiles ERA land-sea mask

Nino 3.4 index

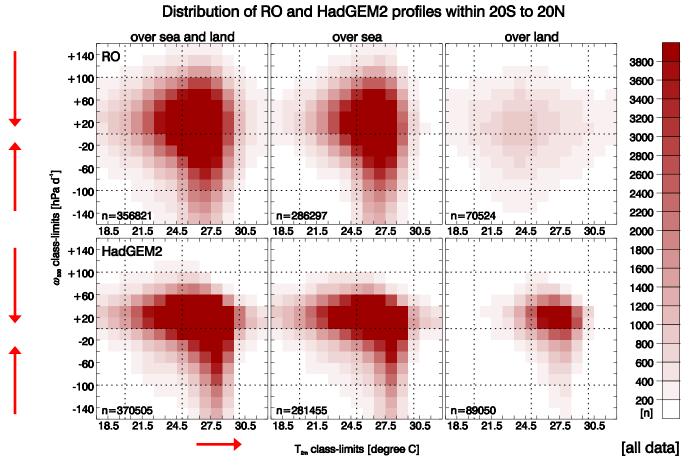
El Niño, La Niña conditions (N3.4 index values above/below 0.4) www.esrl.noaa.gov/psd/forecasts/sstlim/global/indices_global



- Period 2001 to 2008
- Tropics 20S to 20N, 4 pressure levels: 250 hPa, 100 hPa, 50 hPa, 10 hPa 18 altitude levels: 5 km to 33 km
- Moist and dry tropical regimes
- Classification of dynamical up- and downdraft regions by pressure vertical velocity at 500 hPa and surface temperature from ERA-Interim for RO profiles and from the HadGEM2 model itself for the model
- Sort RO and collocated HadGEM2 profiles into vertical velocity classes for a systematic comparison
- Classified temperature data are investigated wrt differences over land and sea and El Niño/La Niña conditions

Distribution – ERA-Int and HadGEM2

ERA-Int and HadGEM2: Distribution of ω500 and T2m


- Distribution of HadGEM2 less broad than ERA-Int
- Agreement in T2m (both use SST)
- Use ERA-Int ω500 and T2m as proxy to classify RO

Distribution of RO and HadGEM2

Distribution of RO and HadGEM2 profiles in ω500 and T2m

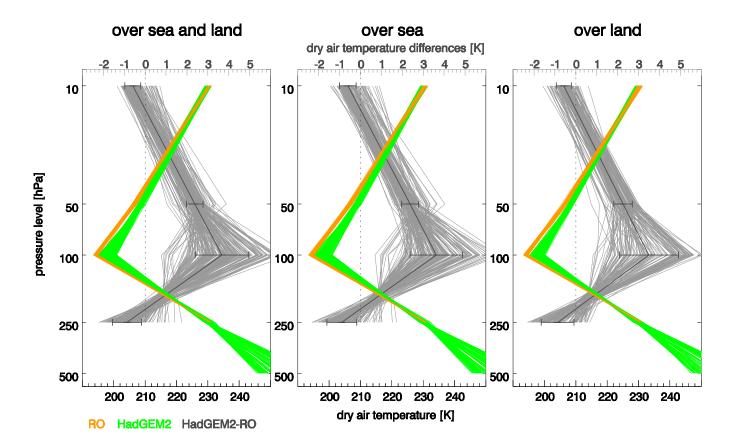
UNI

ener Cente

RO profiles cluster in classes between (-60 to 80)hPa/d and between (23 to 28)°C

• HadGEM2 profiles cluster narrower in ω (-40 to 60)hPa/d and broader in T2m (21 to 29)°C

Over land RO profiles cluster at lower temperatures than HadGEM2

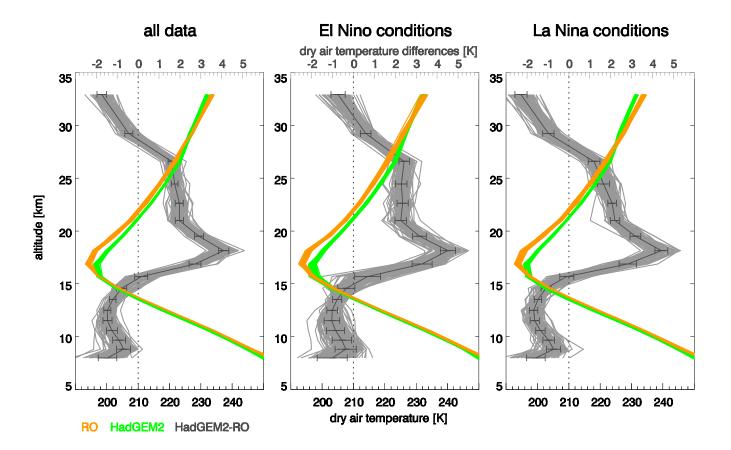

Mean Temperature Profiles – RO and HadGEM2 (1)

Classified RO and HadGEM2 mean dry temperature profiles – 4 p-levels

UNI

Negener

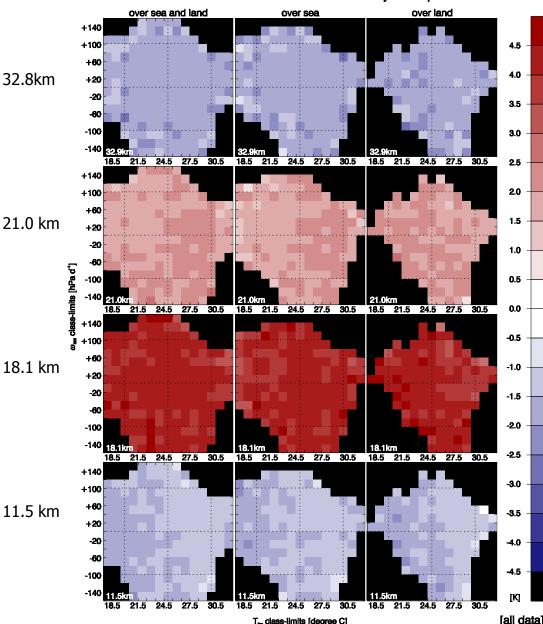
Cente



- Temperature profiles of all class means and differences HadGEM2 minus RO
- HadGEM2 shows warmer tropopause (~3 K) coarse altitude resolution?
- HadGEM2 colder than RO below at 250 hPa and at 10 hPa

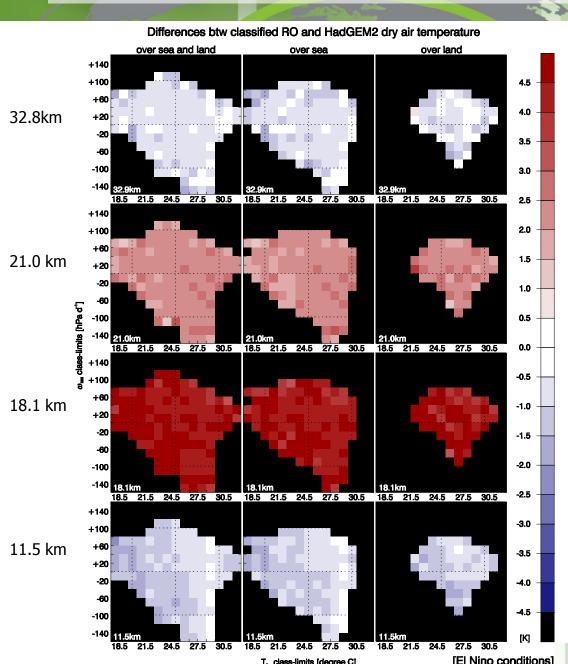
Classified RO and HadGEM2 mean dry temperature profiles – 18 alt-levs

UNI


Vegener Cente

- HadGEM2 shows warmer tropopause ~4 K and LS, lower variability than at p-levels
- HadGEM2 colder than RO below ~15 km and above ~28 km
- Difference El Niño (-1 K in UT; 2.5 K in LS) and La Niña (-1.5 K in UT; 1 to 2 K in LS)

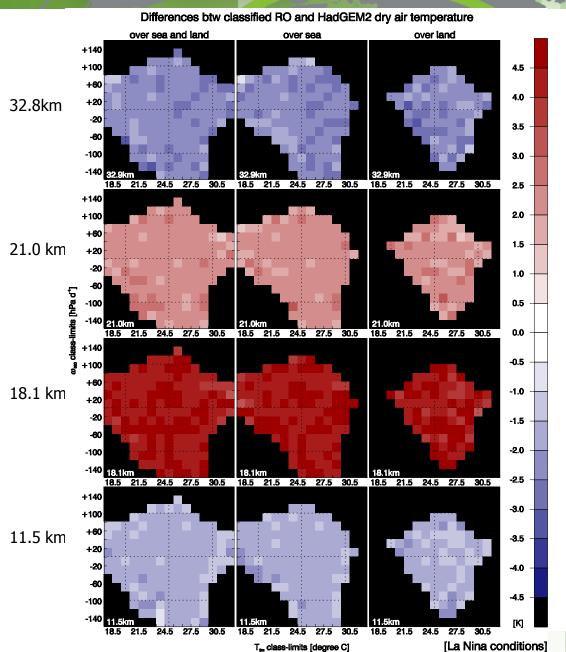
Temperature Difference – RO and HadGEM2 (1)


T_{an} class-limits [degree C]

Differences btw classified RO and HadGEM2 dry air temperature

- **Differences of classified RO and HadGEM2** dry temperature profiles
- Distribution of differences in classes
- 4 altitude levels
 - 11.5 km
 - 18.1 km
 - 21.0 km
 - 32.8 km
- HadGEM2 colder in UT<15 km
- Maximum difference to RO above the tropopause
- HadGEM2 warmer in LS
- HadGEM2 colder >28 km
- No difference over land/sea

Temperature Difference – RO and HadGEM2 (2)


 Differences of classified RO and HadGEM2 mean dry temperature profiles

El Niño

- Troposphere larger differences at lower surface temperatures and larger ω500 values
- Different distribution over land and over sea

Temperature Difference – RO and HadGEM2 (3)

 Differences of classified RO and HadGEM2 mean dry temperature profiles

La Niña

- Difference of HadGEM to RO is larger at highest levels
- Difference of HadGEM2 in tropospheric levels about -1 K

- First results on representation of UTLS temperature in RO and HadGEM
- Systematic deviation of HadGEM2 from RO was found depending on altitude and atmospheric conditions
- HadGEM2 is warm biased around the tropopause and in the LS
- HadGEM2 is cold biased in the troposphere below ~15 km
- HadGEM2 is cold biased in the stratosphere above ~ 28 km
- Differences in the distribution of up-, downdraft regimes in troposphere

Further investigations

- zoom into differences in distribution in the troposphere
- compare refractivity profiles
- compare temperature and refractivity gradients
- HadGEM3 model with higher resolution, higher top level
- other CMIP5 models

Comparisons of RO observations with model data might be useful for the improvement of parameterization in climate models.

THANK YOU !

