

Radio Occultation Observations of Ionospheric Scintillation

P. R. Straus¹, C. Carrano², R. Caton³, K. Groves² ¹The Aerospace Corporation ²Boston College ³Air Force Research Laboratory

Overview

- CORISS (on C/NOFS) update
- Spectral/theoretical analysis of a scintillation event observed by CORISS & ground-based instrumentation
- The future: COSMIC-2 as the ideal platform for RO scintillation studies
- Comments on joint RO observations of scintillation & ionospheric profiles

CORISS Instrument on C/NOFS: Status

- C/NOFS launch: April 2008
- C/NOFS orbit: 13° inclination, 410×860 km elliptical (initial)
 Altitude is now 405×780 km due to atmospheric drag induced delay
- AF is now planning to keep operating C/NOFS satellite in FY13+ – C/NOFS re-entry projected to be sometime in 2015
- CORISS obtains L1 high rate (50 Hz) data throughout occultations at ionospheric tangent altitudes (100-800 km) on the nightside of the C/NOFS orbit for scintillation studies
- CORISS improvements planned for tropospheric data collection
 - Adjust sensor operating mode to provide nightside as well as dayside tropospheric profile data
 - Evaluate the possibility of a software upload to enable open loop data collection (may not be possible due to microprocessor limitations)

CORISS/ALTAIR Geometry for Scintillation Event

Coherent Returns from ALTAIR & CORISS SNR

- ALTAIR indicates location of small-scale (40cm) irregularities relative to the CORISS tangent point track
- CORISS detects ionospheric irregularities only within F region, while high sensitivity of ALTAIR reveals structure at slightly lower altitudes
- Mean scattering location is slightly westward of the CORISS tangent point track.

Simulation of Scintillation in a Limb Viewing Geometry

Single Bubble Simulation

Multi-Bubble Simulation

CORISS Observations & Simulation

- Assume weak scattering: $d_s = \frac{1}{2\lambda} \left(\frac{V_{scan}}{f_b} \right)^2$
 - Given propagation orthogonal to <u>B</u>, then $V_{scan} = V_{\perp}^{C/NOFS} + \frac{d_s}{d} \left[V_{\perp}^{GPS} - V_{\perp}^{C/NOFS} \right]$

where d is C/NOFS-GPS distance

•

- Yields d_s ~ 630 km (t.p. is ~500 km)
- Determine irregularity strength, region size, spectral slope, & BG density profile from ALTAIR, SCINDA & CORISS measurements

Multiple Phase Screen Simulation of CORISS Data

Mapping of Instability Regions Along Magnetic Field Lines Aids in Scintillation Data Interpretation

Low Latitude CORISS Scintillation Map

COSMIC-2 Instrumentation/Orbit is Ideal for Scintillation Studies

- VIDI in-situ sensor will measure plasma density fluctuations, enabling comparison of irregularity spectrum with RO observations of scintillation spectrum
 - 3D plasma drift (Electric Field) measurements also provide insight into instability onset
 - 24°/520 km orbit enables these observations
- RF Beacon will enable measurements of scintillation at UHF, Lband, and S-band frequencies (when over ground sites) enabling comprehensive comparisons of RO measurements with "ground truth" data at non-GNSS frequencies
 - Can RO observations be used as a reliable proxy for frequencies above and below L-band?
 - Additional consideration: TriG may be able to provide independent L1/L2/L5 scintillation observations

Summary of CORISS (L-Band)/SCINDA (UHF) Comparisons

April 2008-July 2009 Study Period

	CORISS S _{RO(1s)} >0.05 & SCINDA S4>BG+0.1		CORISS S _{RO(1s)} <0.02 & SCINDA S4 <bg+0.1< th=""></bg+0.1<>	
SCINDA Site	∆t = ±1 hour	∆t = ±2 hour	∆t = ±1 hour	∆t = ±2 hour
Ancon	72%	82%	93%	87%
Christmas Island	66%	77%	88%	81%
Kwajalein	77%	84%	93%	87%
Guam/Manila	49%	57%	95%	91%

RO Scintillation & Ionospheric Profile Observations

- Irregularity regions that cause scintillation are embedded in plasma depletion regions ("bubbles") → major deviations from spherical symmetry
 - Might anticipate that Abel transformed profiles would be very poor but this is not always the case
 - One also sometimes sees "ratty" EDPs, but no scintillation!

Summary

- RO studies of ionospheric scintillation are in their infancy (or maybe "early childhood") and there is great potential for RO to be used for global scintillation specification
- The COSMIC-2 mission will enable RO to achieve this potential

