# Impact of Satellite Orbits and Clocks on Radio Occultation (RO) Data Processing

Yoke Yoon, Yago Andres, Axel von Engeln, Christian Marquardt Oliver Montenbruck (DLR), Andres Hauschild (DLR)



IROWG-2 Estes Park, CO 28 March – 3 April 2012

EUM/OPS-EPS/VWG/12 Issue 1.0 22/03/2012



# Overview

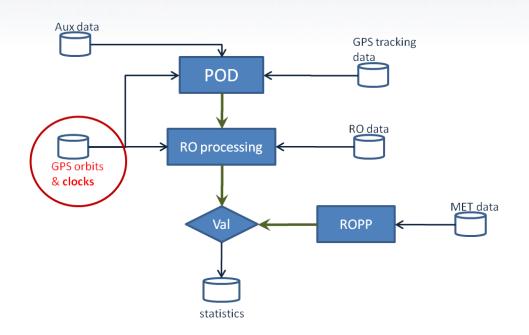
## Introduction

- ERA-CLIM project
- Contribution from EUMETSAT
- Impact of satellite orbit and clock quality in MetOp RO data processing
  - Post-processing using final GPS products (ERA-CLIM)
  - NRT using various NRT and RT GPS products (operational)
- COSMIC POD at EUMETSAT
  - Results and discussion on achievable accuracy

EUM/OPS-EPS/VWG/12 Issue 1.0 22/03/2012



# Introduction

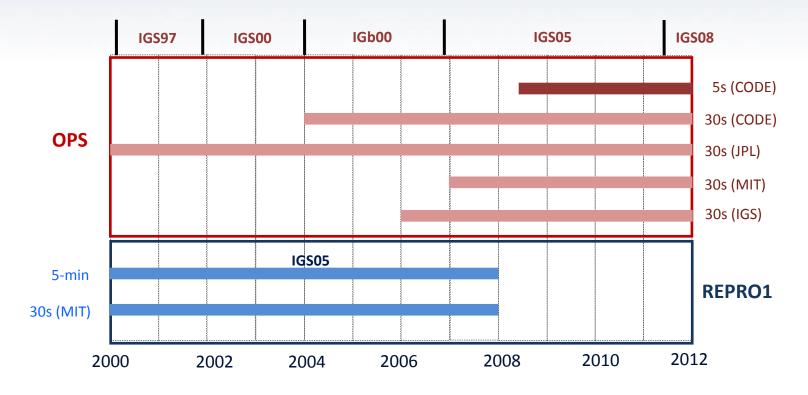

- European Re-Analysis of global CLIMate observations (ERA-CLIM)
  - Project headed by ECMWF
  - Re-analysis of in-situ and satellite observation data in generating consistent global model of Earth's climate system
  - Objective is to improve on numerical weather forecasting
- □ EUMETSAT RO activity in ERA-CLIM
  - Provide reprocessed GPS RO observations (2001-present) from MetOp, COSMIC, CHAMP, GRACE, etc
    - Maintain consistency in using the type of GPS products
    - Investigation into GPS orbit and clock products and their impact on POD and in turn RO bending angle profile

EUM/OPS-EPS/VWG/12 Issue 1.0 22/03/2012



### □ Simple layout of post-processing architecture

- GPS raw data processing
- Precise orbit determination
- RO data processing
- Comparison with ECMWF model






EUM/OPS-EPS/VWG/12 Issue 1.0 22/03/2012

#### **GPS Final Orbit and Clock Products**

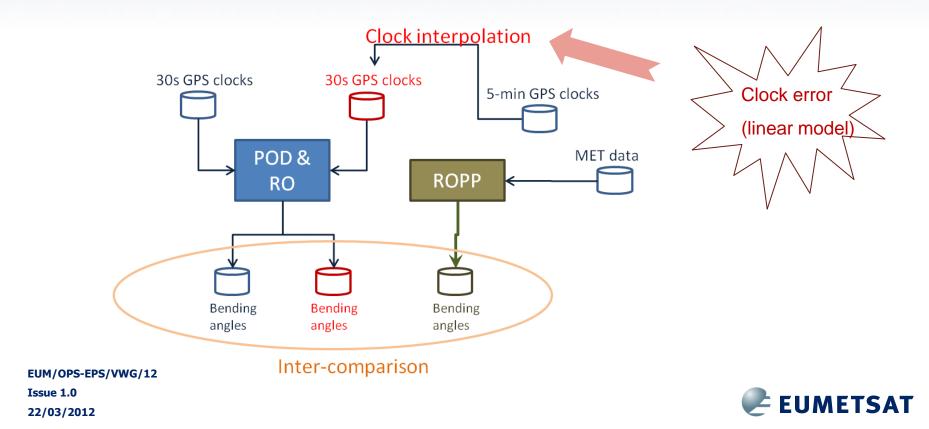
- □ GPS orbit product 15 mins interval
- □ GPS clock product 5-min, 15-min interval (standard) and others (table)





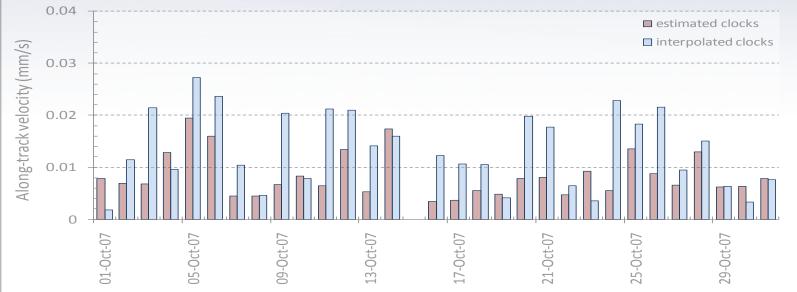
Issue 1.0

□ Studying impact of GPS clock products on RO


- MetOp GRAS data from 30 Sept 2007 31 Oct 2007 (~1 month)
- Generated two sets of solution
  - ESOC Repro1 (interpolated 30s GPS clocks)
  - CODE OPS (estimated 30s GPS clocks)
- Results from analysis
  - MetOp orbit (POD)
  - Bending angle (using geometric optics processing)






□ Studying impact of GPS final products on RO

• ESOC Repro1 (5 min clocks) vs CODE OPS (30s clocks)



#### **Assessment of MetOp POD**

Arc-wise (RMS) statistics derived from 4-hr orbital overlap



#### ✓ Along-track velocity

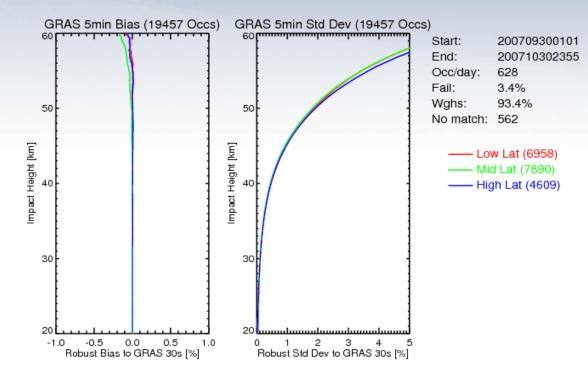
✓ Median

Slide: 8

estimated clocks

< 0.02 mm/s 0.007 mm/s

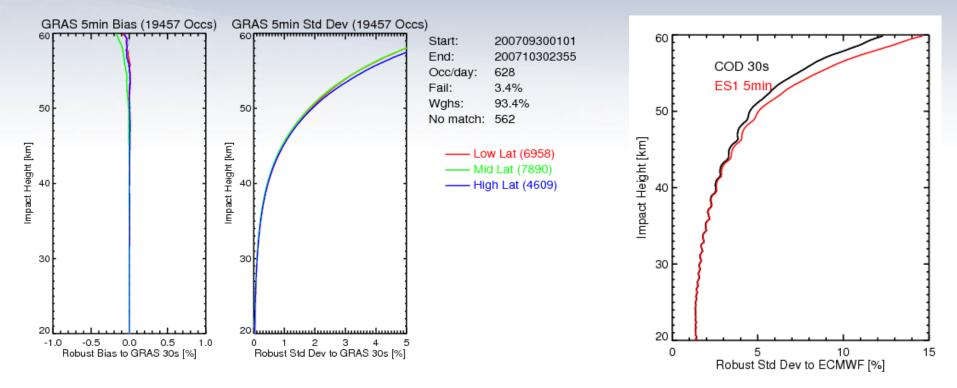
#### interpolated clocks


- < 0.03 mm/s
- 0.012 mm/s

3D Position (due to interpolated GPS clock errors) : < 2 cm (RMS)

EUM/OPS-EPS/VWG/12 Issue 1.0 22/03/2012




#### **Assessment of bending angle**



EUM/OPS-EPS/VWG/12 Issue 1.0 22/03/2012



#### **Assessment of bending angle**



- $\checkmark$  No visible impact at < 40 km impact height
- ✓ Better STDEV from estimated 30s clocks > 40 km impact height

EUM/OPS-EPS/VWG/12 Issue 1.0 Slide: 10 22/03/2012





### Near Real Time Analysis

EUM/OPS-EPS/VWG/12 Issue 1.0 22/03/2012

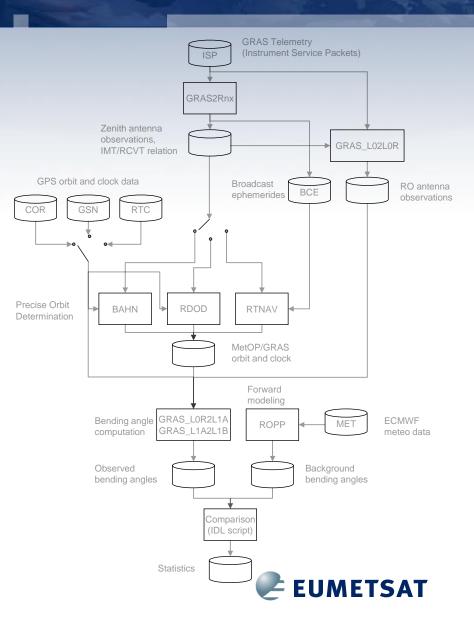


- STUDY (Collaboration with GSOC/DLR) Assess different GPS based NRT POD concepts with GRAS data (Nov 15 to Dec 15 2011)
  - Different NRT GPS products
  - Different POD s/w tools
  - $\Rightarrow$  Focus on:

achieved along-track velocity accuracy resulting bending angles

### MOTIVATION

- Better understand the effect of NRT LEO and GPS orbits in RO
- Provide design recommendations/ requirements for future RO missions


EUM/OPS-EPS/VWG/12 Issue 1.0 Slide: 12 22/03/2012



### **System Setup**

- □ GPS products:
  - CODE rapid (reference)
  - GSN/ESA
  - RETICLE/DLR
  - Broadcast Ephemeris (BCE)
- POD tools
  - ESA/NAPEOS (BAHN) (Batch Filter)
  - DLR/GHOST (Batch Filter)
  - DLR/RTNAV (Extended Kalman Filter)
- ECMWF forward modelling for comparison of Bending Angles (BA)

EUM/OPS-EPS/VWG/12 Issue 1.0 22/03/2012



#### **GPS products and POD setups**

|             | COR            | GSN                 | RTC           | BCE         |
|-------------|----------------|---------------------|---------------|-------------|
| Description | CODE rapid     | GSN orbit and clock | RETICLE       | Broadcast   |
|             | products       | products            |               | Ephemerides |
| Category    | post-processed | near-real-time      | real-time     | real-time   |
| Originator  | CODE           | ESA/ESOC            | DLR/GSOC      | GPS         |
| Network     | IGS            | GSN                 | IGS R/T & DLR | GPS         |
| Arc length  | 24 h           | orbit: 24 h + 19    | -             | 2 h         |
|             |                | h(pred)             |               |             |
|             |                | clock: 30 m         |               |             |
| Update      | 24 h           | orbit: 3 h          | -             | 2 h         |
| interval    |                | clock: 15 m         |               |             |
| Latency     | 12 h           | orbit: 60-90 m      | <10s          | -           |
|             |                | clock: <45 m        |               |             |
| Step size   | orbit: 15 m,   | orbit: 15 m         | 10 s          | -           |
|             | clock: 30 s    | clock: 30 s         |               |             |

#### 6 different processing chains:

Napeos:

GHOST:

RTNAV:

COR (24h arc, daily), GSN (6h arc, 1.5h freq.), RTC (6h arc, 1.5h freq) COR (24h arc, daily), RTC (6h arc, 1.5h freq)

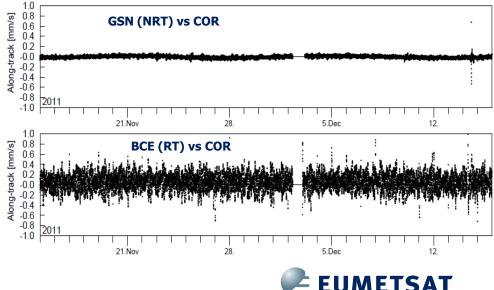
V: BCE (simulated real time)

Issue 1.0

Slide: 14 **22/03/2012** 



#### **Results - POD**


| Solution  | Radial<br>[mm] | Along-track<br>[mm]         | Cross-track<br>[mm] | Position<br>(3D rms, [mm]) |
|-----------|----------------|-----------------------------|---------------------|----------------------------|
| OFF_COR_N | -6 ± 16        | $-2 \pm 40$                 | +23 $\pm$ 13        | 51                         |
| NRT_RTC_N | -7 ± 19        | +1 ± 39                     | +23 ± 16            | 52                         |
| NRT_RTC_G | +1 ± 18        | $\textbf{-3}\pm\textbf{36}$ | -1 ± 14             | 43                         |
| NRT_GSN   | -6 ± 18        | $-2 \pm 39$                 | +23 ± 15            | 51                         |
| RT_BCE    | +7 ± 195       | +157 ± 329                  | +25 $\pm$ 228       | 473                        |
| Solution  | Radial         | Along-track                 | Cross-track         | Velocity                   |
|           | [mm/s]         | [mm/s]                      | [mm/s]              | (3D rms, [mm/s])           |
| OFF_COR_N | $0.00\pm0.03$  | -0.01 ± 0.03                | $0.00\pm0.02$       | 0.05                       |
| NRT_RTC_N | $0.00\pm0.03$  | $\textbf{-0.01}\pm0.03$     | $0.00\pm0.02$       | 0.05                       |
| NRT_RTC_G | $0.00\pm0.03$  | $0.00\pm0.02$               | $0.00\pm0.01$       | 0.04                       |
| NRT_GSN   | $0.00\pm0.03$  | -0.01 ± 0.03                | $0.00\pm0.02$       | 0.05                       |

 $+0.06 \pm 0.16$ 

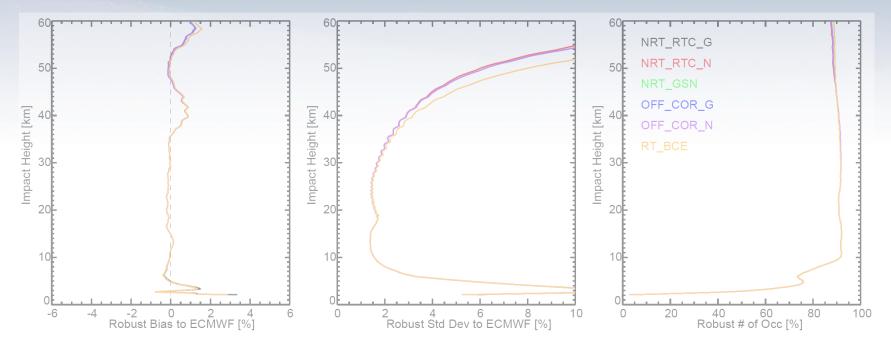
 $0.01 \pm 0.24$ 

0.48

- All NRT solution < 0.1mm/s along track
- Offline & NRT solutions (NAPEOS vs Ghost) agreement ~ 5cm
- Small inter-agency biases in radial (6mm) and cross-track (23mm)
- Simulated RT orbit have a factor 10 larger error in MetOp pos. and vel., but only a factor 2 for along track vel.



EUM/OPS-EPS/VWG/12


 $-0.15 \pm 0.34$ 

Issue 1.0

Slide: 15 22/03/2012

RT BCE

#### **Results – NRT Bending Angle**



- 15100 rising and setting occultation events, only Geometric Optics processing
- Offline (one day lag) processing provides up to 10% more occultations (unhealthy satellites)
- All NRT solutions provide an almost identical bending angle performance
- Slight deviation at high altitude from BCE-derived BA

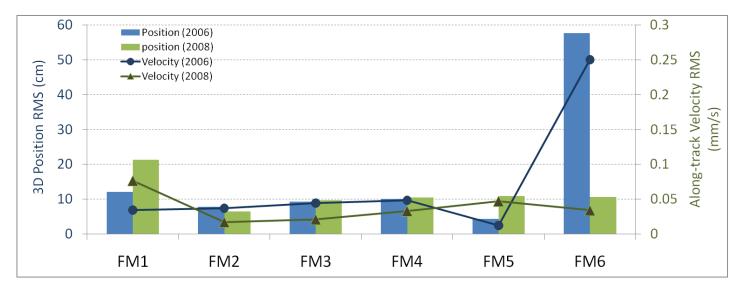
EUM/OPS-EPS/VWG/12 Issue 1.0 22/03/2012





### Assessment of COSMIC POD

EUM/OPS-EPS/VWG/12 Issue 1.0 22/03/2012




## **COSMIC Precise Orbit Determination**

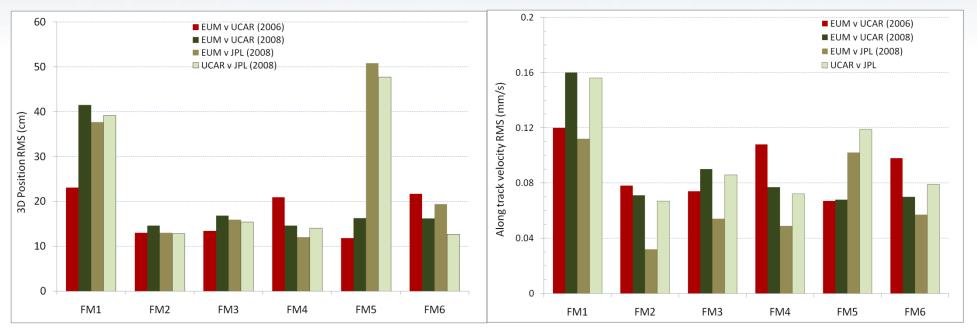
- □ Two sets of statistics for 6 COSMIC s/c
  - 2-10 August 2006
  - 26 Nov 3 Dec 2008
- □ Internal (orbit overlap) assessment (stats based on median)
  - 3D position (RMS) < 25 cm

[exclude FM6 in 2006]

• Along-track velocity (RMS) < 0.1 mm/s






#### EUM/OPS-EPS/VWG/12

Issue 1.0

## **COSMIC Precise Orbit Determination**

#### External orbit assessment (stats based on median)

CDAAC (online products)JPL (reprocessed orbits)



3D position < 60 cm

Along-track velocity < 0.2 mm/s



EUM/OPS-EPS/VWG/12 Issue 1.0 Slide: 19 22/03/2012

# **Summary and Conclusions**

□ Impact of satellite orbit & clocks on RO processing

- POD performance and bending angle statistics from post-processing (ERA-CLIM) and NRT (operational) have been assessed using one month of MetOp data
- MetOp along-track velocity accuracy (POD)
  - $\checkmark$  Post-processed < 0.02 mm/s
  - ✓ NRT < 0.05 mm/s
  - ✓ RT ~ 0.2 mm/s
- Bending angle performance
  - $\checkmark$  Clock interpolation error (5min $\rightarrow$ 30s) induced no significant difference
  - $\checkmark$  NRT and rapid solutions are identical
  - $\checkmark$  RT compatible with NRT for height up to 40km
- □ COSMIC POD
  - Overall POD (EUM, UCAR, JPL) results show good agreement

EUM/OPS-EPS/VWG/12 Issue 1.0 Slide: 20 22/03/2012

