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Outline 
 

§  Introduction to the Global Observing Systems Analysis 
(GOSA) Group 

§  GOSA activities 
1)  Observing System Simulation Experiments (OSSEs) 
2)  Observing System Experiments (OSEs) 
3)  GNSS Radio Occultation algorithm development (in support of 

COSMIC-2) 
4)  NOAA ground-based GPS observations (GPS-Met) 
 

§  Outlook 
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GOSA Group 
§  Recently formed – September 2014 
§  Maximize and optimize the uses of current and 

future global observations to improve numerical 
weather prediction forecast skill in NOAA’s 
models. This includes algorithm development, 
management, and science support  

§  Quantitatively evaluate the complementarity of 
different observing systems through OSSEs and 
OSEs to help NOAA management prioritize 
mission designs in a cost-effective way 

§  Why is GOSA so important? OSSEs save 
Taxpayer $$ as they allow to analyze tradeoffs in 
the design and configuration of proposed 
observing systems (e.g. coverage, resolution, 
accuracy and data redundancy) 
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OSEs and OSSEs 

§  Observing System Experiments (OSEs) allow the 
evaluation of the impact of current observations in weather 
forecasting 

§  Observing System Simulation Experiments (OSSEs) 
provide a rigorous, cost-effective approach to evaluate the 
potential impact of new observing systems, alternate 
configurations and deployments of existing systems, and to 
optimize observing strategies. They are also used to prepare 
for the utilization of new types of data and to optimize the 
utilization of existing data 

§  Both OSEs and OSSEs are necessary to quantitatively 
evaluate the benefits of observations in weather forecasting 
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GOSA leading science activities 

§  Improve the use of Current Observing 
Systems and evaluate the impact of Future 
Observing Systems: OSEs and OSSEs with 
Radio Occultation observations (COSMIC-2 
and commercial options) 

§  Mitigate the Risk of Satellite Observing Gaps: 
OSEs and OSSEs with Radio Occultation and 
Unmanned Aircraft System observations, 
complementarity of JPSS and Radio 
Occultation observations 

§  Key component of the of NOAA’s 
Quantitative Observing System Assessment 
Program (QOSAP) across-line offices that 
attempts to coordinate and prioritize OSSE 
efforts 

§  Ground-based GPS network (GPS-Met) 
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(1) OSSEs: with RO 
§  Investigate the benefits of increasing the number of assimilated GNSS RO 

profiles on global weather forecast skill 
–  NCEP’s Global Data Assimilation System (GSI/GFS) 
–  Focus on current and future RO constellations, including commercial and non-commercial 

options 
–  Conduct preliminary OSSEs with a sub-optimal configuration set up  
–  Follow-up with more rigorous OSSEs (ongoing effort to be completed by Dec 2015) 

§  Configuration setup for preliminary OSSEs: 
–  T511 ECWMF Nature Run (~ 40 km) 
–  NCEP’s global data assimilation system is T382 with non-hybrid GSI analysis – operational 

configuration is T574 with hybrid GSI  
–  RO observation is refractivity – operational configuration assimilates bending angle, a less 

derived product 
–  Assimilation of RO profiles stops at 30 km – operational configuration assimilates up to 50 

km 
–  All observations are assumed error-free except for satellite radiances, which have biases 

added on 
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Preliminary OSSEs with RO 

§  Experiments ran from 2 July 2005 to 21 August 2005 
§  Verification covers the period of 16 July – 21 August 2005 
§  RO missions being considered: 

–  Current RO constellation: primarily COSMIC (6 satellites) 
–  COSMIC-2, both equatorial (6 satellites) and polar (6 satellites) 

components 
–  GeoOptics (commercial, 12 satellites) – further evaluation is ongoing work 
–  Planet IQ (commercial, 12 satellites) – further evaluation is ongoing work 

§  Experiments: 
–  OSSENOGPS: control without RO observations (0 RO satellites) 
–  OSSECTRL: control, all observations (6 RO satellites) 
–  C2EQ: control + COSMIC-2 equatorial (12 RO satellites) 
–  C2PO: control + COSMIC-2 equatorial + COSMIC-2 polar (18 RO 

satellites) 10	
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Preliminary RO OSSE results 

§  Overall, increasing the number of assimilated RO satellites 
from 6 to 18 results in better weather forecast skill: 18 
satellites is better than 12 satellites; 12 satellites is better 
than 6 satellites  

§  There is a lot of room to optimize the assimilation system  
§  Some cases need to be evaluated with more detail to 

understand how results can be improved (e.g. “dropouts”) 
§  Results (not shown here) seem to indicate that with this 

sub-optimal OSSE system saturation might be reached with 
30 satellites 

§  These preliminary studies do not use the state-of-the-art 
OSSE system 
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Next steps for RO OSSEs 
§  Investigate the differences between the analyses and forecasts (horizontal 

maps and vertical cross sections) from the different RO configurations 
§  Evaluate results for individual cases – why we sometimes see “dropouts” with 

the assimilation of RO? – This will likely be improved with the use of the 
hybrid GSI system in the more rigorous experiments 

§  Sanity check: adding RO observations to a poor baseline should result in an 
increase of weather forecast skill 

§  Repeat experiments with a state-of-the-art OSSE configuration 
–  Higher resolution Nature Run 
–  Random errors added to the observations 
–  Hybrid GSI in DA system 
–  Higher horizontal resolution in DA system 
–  Bending angle forward operator instead of refractivity operator 
–  Extending the top of the RO profiles from 30 to 50 km 
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(2) OSEs: Data Gap mitigation activities 
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§  ATMS observations on Suomi-NPP were assimilated into the operational 
NCEP’s global data assimilation system starting in May 2012 

§  Suomi-NPP was placed in early afternoon orbit, providing similar information to 
the existing polar orbiting satellites with MW sounders (AMSU-A and MHS on 
NOAA-18/19, AMSU-A on Aqua, and AMSU-A on NOAA-15) 

§  As a consequence, previous studies showed in general neutral impact of ATMS 
in the NCEP’s system 

§  Due to the delay in the launch of JPSS-1, a “gap” or significant reduction in the 
U.S. MW satellite data is possible 

§  MW soundings are consistently the number one observing system contributing 
to NWP forecast accuracy  

§  In addition, there might a significant loss of RO observations 
§  RO observations are complementarity to MW and IR observations and have 

been shown a significant positive impact on global NWP forecasts worldwide 



Motivation 
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§  Goal of the study is to investigate the impacts on the skill of NCEP global 
forecasts due to a loss of the NOAA and AQUA MW and all RO soundings  

§  Two extreme scenarios are considered 
Ø  MW instruments from NOAA-15/18/19 and AQUA have not reached the 

end of their life before JPSS-1 is launched 
Ø  MW instruments from NOAA-15/18/19 and AQUA are lost before JPSS-1 

is launched 
§  Evaluate the impact of losing all RO observations in both extreme scenarios 
§  Results of the study might be considered pessimistic (worse case) as all systems 

are not likely to fail before there are some replacements 
§  Extreme cases will indicate relative importance of these losses – will provide 

significant signal 



Experiment Design 
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§  All forecasts begin at 00 GMT and ran for 8 days from 21 February to 30 April 2013. The first seven 
days are used for model spin-up and the forecast comparisons cover the period 28 February – 30 
April 2013 

§  Horizontal resolution of the operational NCEP’s global data assimilation system at the time of this 
study is T574 (~ 27 km) with 64 levels in the vertical 

§  All the experiments used the hybrid version of the NCEP’s global data assimilation system 
§  RO observations (~ 0.4 M/day) versus U.S. MW observations (~ 2.1 M AMSU-A/day) 



AC 250-mb Temperature  
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(a)                                                                                                        (b) 
 
 

 
 
Fig. 4. Top: Anomaly correlation score as a function of the forecast length for the 250-mb temperature field in the NH (a) and SH (b) 
for all six experiments. The differences from the CTL are shown in the lower panels. Bottom: Difference of AC scores with respect to 
CTL in the (a) NH and (b) SH. Vertical bars indicate limits of statistical significance at the 95% confidence levels; curves within the 
corresponding bars are not statistically significant. 
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Fit to Radiosonde (Temperature) 
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                                                                 analysis – observations (K) 
 
 
 
Fig.5. Global temperature biases of analyses relative to radiosondes in all six experiments. 
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Fig.6. Top: Evolution of the magnitude of the global temperature fit to radiosondes at (a) 300-mb and (b) 20-mb. Bottom: Difference 
of biases with respect to CTL. Vertical bars indicate limits of statistical significance at the 95% confidence levels; curves within the 
corresponding bars are not statistically significant. 
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§  A slight loss of accuracy in the NH extratropics forecasts occurs with the loss of 
all U.S. MW data, and this loss is not mitigated with RO observations 

§  In the SH extratropics, the loss of RO data produces a much larger negative 
impact on the forecast than does the loss of the U.S. MW observations 

§  The role of ATMS in mitigating the loss of the other MW sounders is mixed, but 
generally neutral 

§  Thus the potential “gap” in RO may be a more serious risk to global forecasts 
accuracy than potential gaps in the U.S. MW observations 

§  The global biases in analyses and forecasts seem to increase as the number of 
MW observations increases, particularly in the stratosphere – the modest amount 
of unbiased RO only partially reduces these biases 

§  An increase of RO observations should further ‘anchor’ the model resulting in 
improved bias corrections of the satellite radiances 

§  Cucurull L., and R. A. Anthes, 2015: Impact of Loss of Microwave and Radio 
Occultation Observations in Operational Numerical Weather Prediction in 
Support of the US Data Gap Mitigation Activities, Wea. Forecasting, 30, 2, 
255-269. 
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Results 



(3) COSMIC-2: RO algorithm development 

§  Improve the assimilation of the RO observations in the lower troposphere, in 
particular under super-refraction (SR) conditions (top of the PBL) 

§  Is there any useful information in the observations below a SR layer? 
§  Given the indetermination and the larger uncertainty associated with these 

observations, can the analysis benefit from their assimilation? 
§  NBAM (NCEP’s bending angle method) is used to assimilate bending angle 

observations in the operational configuration 
§  An upgraded version of NBAM (NABAM, “A” for “Advanced”) is being 

developed to better address rays that cross a model super-refraction layer, 
particularly when the tangent point is close to the model super-refraction layer  

§  In the meantime, and primarily under this project as well, an additional QC to 
directly detect and reject observations that might have been affected by SR 
conditions (either in the model or in the retrieval) were implemented and became 
operational at NCEP in January 2015 

§  Cucurull L., 2015: Implementation of a quality control for GNSS Radio Occultation 
observations in the presence of large gradients of atmospheric refractivity, Atmos. 
Meas. Tech., 8, 1275-1285, doi:10.5194/amt-8-1275-2015  24	
  



Introduction to NABAM 
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Limitations of NBAM 
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NABAM vs NBAM 
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§  GOSA Group has been established (in coordination with NOAA’S QOSAP 
Program) to coordinate OSSE efforts to help NOAA management 
prioritize mission designs in a cost-effective way 

§  Both OSEs and OSSEs are necessary to quantitatively evaluate the 
benefits of observations in weather forecasting 

§  NOAA is fully committed to Radio Occultation observations – see P. 
Wilczynski’s talk on COSMIC-2 

§  GOSA is engaged in ongoing R&D to quantify impacts of additional 
GNSS RO measurements on operational forecast models (e.g., what is the 
saturation point?) 

§  GOSA has a formal agreement with NWS and NESDIS to support GNSS 
RO research and associated R2O 

§  GOSA is transitioning its ground based GPS application to the private 
sector 
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