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Outline 
• Motivation & Harnisch et al. Report (HHB) 
• Extracting error variances & weighting from 

HHB 
• Impact on analysis T, ZG, Winds & RH 
• Error variance power law exponents 
• Impact Scaling of DFS% & potential “bang 

for the buck” 
• ATOMMS update 
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Questions 

• How does the NWP impact scale with number of 
occultations? 

• How does RO contribute to the analysis 
information content as the occ numbers increase? 

• What is the GNSS RO impact in the troposphere 
vs. stratosphere? 

• How does the RO compare to JPSS and other 
observing systems?  

• What is the NWP impact vs. number of GNSS RO 
satellites vs. $ ? 
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Harnisch et al. 2012, 2013 Overview 
• Examined impact of 2K – 128K occultations per day 
• Ensemble Data Assimilation (EDA) approach 
• Error reduction is relative to the NWP system 

assimilating observations other than GNSS RO 
• EDA generates realistic results for current # of occ 

particularly in Northern & Southern Hemispheres 
• HHB results are likely an underestimate of GNSS 

impact because of suboptimal combining of the 
background and simulated GNSS observations 
– EDA spread was smaller than assumed error covariance 
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Harnisch et al. Study Overview 
• Period of simulations:    July 1 to August 15, 2008 

– NH summer (warm wet), SH winter (colder drier) 
• Results examined here are HHB Error Reductions 

relative to the control or background error 
– Analysis and 24 hr forecast results 

• 4 variables:  Temperature, Geopotential Height, 
Winds and Relative Humidity 

• 14 pressure levels:  10, 50, 70, 100, 150, 200, 250, 
300, 400, 500, 700, 850, 925, 1000 hPa 

• 3 regions: Northern Hemisphere, Tropics & 
Southern Hemisphere 

• # occ/day:  2k, 4k, 8k, 16k, 32k, 64k, 128k  => 256k 
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Scaling of GNSS RO impact (F. Harnisch) 

~ 50 % of the impact  
of 128 000 profiles  

~ 25 million 
bending 
 angles  
per day 

today 

Temperature analysis at 100 hPa 

• Large improvements up to 16 000 profiles per day 
• Even with 32 000 – 128 000 profiles still improvements possible 
 → no evidence of saturated impact up to 128 000 profiles  

(although the additional impact per observation is decreasing)  

ECMWF   Sean Healy 4/17/15  



Impact via Least Squares 
• Analysis is a combination of a Background or Control 

(= forecast plus observations other than GPS) and 
the GNSS RO observations 
 

• Assuming the Background or Control & GPS errors 
are independent, then the least squares solution 
that combines the background and GNSS information 
has a variance given by 

σA
2 = [σC

-2 + σG
-2]-1 

• The variances here represent regional averages at a 
given pressure level 
– for one of the 4 variables (T, ZG, U & RH),  
– for the NH, SH or Tropics,  
– for a given number of occultations/day. 
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Extracting the GPS Error Variance 
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Extracting the GNSS RO Error Variances 
• Variance of Analysis normalized to Background 

σAr
2 = σA

2 / σC
2 = [1+ σGr

-2]-1 
– where σGr = σG

 / σC  
 

• Determine relative GNSS error variance as 
σGr

2 = [σAr
-2 -1]-1  

– to see how the GNSS error, σGr , is scaling with the number of 
occultations 
 

• Least squares optimized GNSS weight  
WG = [1+ σGr

2]-1 

– closely related to Degrees of Freedom constrained by GNSS RO 
observations 

– Create impact bar charts from this 
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σGr and these relationships help in interpreting 
and understanding the HHB results and scaling of 
the NWP impact and information content of large 
increases in the # of GNSS RO observations 
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Impact & Information Content 

• Present analyses are ~80% forecast and ~20% 
observations. 
– Presently, RO contributes ~10% of the 20% ~ 2% of 

analysis content 

• The observational impact on and contribution 
to the information content in the analyses can 
be greatly increased by greatly increasing the 
number of occultations 
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HHB EDA Error Reduction Results 
• Example:  Normalized impact results on Temperature 
• Believability:  Simulated 2000 occ close to observed impact 
• Colors correspond to particular number of occultations 
• X-axis is fractional reduction in error due to GNSS RO 
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GNSS RO 
Impact on 

Temperature 
Analyses 

For 128K occ/day 
• GPS T σGrT

2 at 500 hPa in Tropics: 1.76  
⇒ 36% of temperature information from GNSS RO 
⇒ 64% of information from background & rest of GOS 

 

• Minimum GPS T σGrT
2 at 70 hPa in SH: 0.15  

⇒ 87% of temperature information from GNSS 
⇒ 13% of information from background & rest of GOS 

summer winter 
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Extrapolate 
Temperature Error 

Variance 
 

128K => 256K occ/day 

• T (500 hPa) in Tropics:   1.76 x 2^-0.45 = 1.29  
⇒ 44% of temperature analysis information from GNSS RO 
⇒ 56% of information is from background & GOS 

 

• T (50-100 hPa) in SH & Tropics:   0.16 x 2^-0.6 = 0.11  
⇒ 90% of temperature analysis information from GNSS RO 
⇒ 10% of information is from background & GOS 
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Temperature Impact Summary 

• Strongest variance scaling is in NH,   
– Exponent:  -0.72 

σGrT
2 

(2K) 
2K 

Info 
σGrT

2 
(32K) 

32K 
Info 

σGrT
2 

(128K) 
128K 
Info 

σGrT
2 

(256K) 
256K 
Info 

70 SH 1.71 37% 0.35 74% 0.15 87% 0.11 90% 

500 NH 
Summer 49 2% 6.7 13% 2.3 30% 1.36 42% 

500  
Tropics 14.4 6.5% 3.5 22% 1.76 36% 1.29 44% 
500 SH 
Winter 23.7 4% 3.8 21% 1.5 40% 0.95 51% 
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Geopotential 
• Geopotential shows similar overall impact pattern 
• Peak impact: 40% error reduction (smaller than 

Temperature) 
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Winter  Summer  
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Impact on Wind Analyses 
• Impact on winds shows similar overall pattern 
• Peak impact in LS of 50% error reduction for 128K occ 

lies between Temperature & Geopotential peak impacts 

Winter  Summer  
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GPS RO Impact on NWP Moisture 

GPS RO provides unique information on 
tropospheric water vapor 

– Most useful in warm tropospheric regions  
• For measuring variability: up to ~240K level in troposphere 

– High precision in lower into upper trop: σq ~ 0.2 g/kg  
– |Bias| < 0.03 g/kg 
– Unique high vertical resolution (~200 m) with global 

sampling 
– All-weather, unbiased sampling 

• Need to solve super-refraction problem to routinely 
probe low latitude boundary layer 
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EDA Spread Reduction (%) for Relative Humidity Analysis 

• Impact at high altitudes due to temperature, not moisture 
• Absolute humidity impact at altitudes below ~300 hPa level 
• Largest humidity impact on tropical troposphere (850 – 300 hPa) 
• Relative minimum of impact at 100 – 300 hPa 
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Predicted Impact on Moisture Analyses 
• Local 1DVar estimate based on GPS-MET     (0.3 - 1 = -0.7) 
• Harnich et al. EDA estimate up to 128Kocc/day 
• Background covariances differ 

Fractional Relative Humidity Error Reduction
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Maximum of Humidity Impact 
• Max humidity impact: Tropics 400 to 700 hPa 
• 128K daily occ: GNSS relative error variance ~ 0.5  

⇒ ~2/3 of analysis WV information from GNSS RO at 
these levels in the tropics. 

• 256K daily occ: GNSS relative error variance ~ 0.37  
⇒ 3/4 of analysis WV information from GNSS RO 
⇒ Observational constraints are important for climate 

research   
 

⇒ Lack of RO impact on humidity to date 
apparently because of too few occultations 

Kursinski et al IROWG4  4/21/15 21 



Surprise: Impact on Tropical Troposphere Winds 
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Where is RO Impact on Tropical Mid-
Troposphere Winds Coming From? 

• Little impact of RO on tropical wind 200 & 300 hPa  
– Despite relatively small T & ZG errors there  
– Indicates wind information is not coming from T & ZG 

 

• Moisture at 700-400 hPa tightly constrained by RO 
⇒ Suggests constraint is via advection of moisture 

in the 4DVar system 
• Clear sky satellite water vapor channels are used to 

constrain mid-troposphere winds (Bormann et al., 2012) 
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500 hPa Wind Impact Summary 

• Strongest scaling in NH from 2K to 128K,   
– Exponent:  -1.07 
– Due to tight correlations in background?? 

 

• Could orbiting lidar could provide this level of NWP 
analysis impact (given its sparse coverage)? 

Pressure level 
& region 

σGrU
2 

2K 
2K 

Info 
σGrU

2 
32K 

32K 
Info 

σGrU
2 

128K 
128K 
Info 

σGrU
2 

256K 
256K 
Info 

500 NH summer 241 0.4% 11.7 7.9% 2.8 26% 1.53 40% 
500 Tropics 33 2.9% 5.2 16% 2.2 31% 1.58 39% 

500 SH winter 45 2% 6.4 13.5% 2.5 29% 1.52 40% 
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Power law scaling of error variances 

• HHB figures suggest power law dependence for GNSS 
error variance scaling based on the : 

σGr
2(Ni) = σGr

2(Nj) * (Ni/Nj)P  
where N is the number of occultations per day and P < 0. 

• Determine P from the HHB results 
• The exponent, P, determines how quickly the error 

variance decreases as the number of occultations 
increases. 
– Large negative value means more impact per occultation 
– Simple argument about adding independent constraints 

to a 2D grid of variables:  P = -1. 
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What do Error Variance Power Law Exponents tell us 

• Exponent magnitudes are 
generally less than 1 

• But exponent magnitudes for 
GPS wind errors can be > 1 

• Gradual decrease in impact 
per occultation as the 
number of occultations 
increases (gradual 
saturation) 

• Exponents tend to be larger 
in Northern Hemisphere 
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Exponent Behavior 
• GNSS wind error variances tend to have largest exponent 

magnitude 
⇒ Change in impact for Doubling # occ is larger 
⇒ Guess: adding single new geopotential height profile yields 

pressure gradients with multiple nearby points  
⇒ constrains winds in multiple directions from that single point 

 

• GNSS error variances in the Northern Hemisphere tend to 
have lower impact for small # of occultations but largest 
error variance exponent magnitudes, winds in particular 
⇒ Increase in impact for Doubling # occ is larger in NH 
– Tighter background error & correlations in NH due to in-situ 

obs? 
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Wind Impact Summary 

• Strongest scaling in NH from 2K to 128K,   
– Exponent:  -1.07 
– Due to tight correlations in background?? 

 

• Suggests ability to infer impacts of large amount 
of occ from present impact may be limited 

Pressure level 
& region 

σGrU
2 

2K 
2K 

Info 
σGrU

2 
32K 

32K 
Info 

σGrU
2 

128K 
128K 
Info 

σGrU
2 

256K 
256K 
Info 

500 NH summer 241 0.4% 11.7 7.9% 2.8 26% 1.53 40% 
500 Tropics 33 2.9% 5.2 16% 2.2 31% 1.58 39% 

500 SH winter 45 2% 6.4 13.5% 2.5 29% 1.52 40% 
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Scaling GNSS RO Impact in Terms of DFS 

• HHB results are in terms of analysis error 
reduction 

• DFS% is used to compare impact of different 
observing systems 

• Conversion from HHB results to extrapolate 
present GPS RO DFS results to higher densities 

ErrHHB => VarGPS => WeightGPS ~ DoF 
 

Kursinski et al IROWG4     4/21/2015 29 



Observational Impacts at ECMWF 2010 
Cardinali & Healy (2013)               DFS  (DF total)       FER 
• ~2500 GPS occ/day                       7%  (1.4%),          10% 
• 6 AMSU-A                                     21%  (4.2%),          21% 
• IASI/AIRS                                  16-21% (3.2-4.2%)    10% 
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GPS RO Impact Extrapolated to COSMIC2 
• Cardinali & Healy 2013 DFS & FER results in blue (re-normalized) 
• JPSS (green) = linear sum of IASI, AMSU-A, MHS & Meteosat AMV (1 each) 
• Extrapolation to 12 COSMIC2 satellites (in red) based on Harnisch et al. (2012, 

2013) results at ECMWF,     Power law exponent of variance scaling: 0.58 
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GPS RO Impact Extrapolated to 12 satellites 4 GNSS 
• Cardinali & Healy 2013 DFS & FER results in blue (re-normalized) 
• JPSS (green) = linear sum of IASI, AMSU-A, MHS & Meteosat AMV (1 each) 
• Extrapolation to PiQ 12 satellites (in red) based on Harnisch et al. (2012, 

2013) results at ECMWF,       Power law exponent of variance scaling : 0.53 
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Impact in Troposphere v. Stratosphere 

Based on Weighting estimated from HHB results… 
• Roughly 2/3 of analysis DFS impact is in 

stratosphere and 1/3 is in troposphere 
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FER Bang for the Buck 

• Some apples vs. oranges here 
• GNSS RO impact can be much larger than JPSS 
• And a bargain in comparison 
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kOcc/
day 

Cost  
($B) 

24 hr FER 
(2010) 

FER/cost 
(%/$B) 

JPSS-1  
(CrIS, ATMS, VIIRS,OMPS) 5 1  

(=16.8%) 
3.4 

6 sat, 1 GNSS 2.5 0.15? 0.6 68 
6 sat, 2 GNSS 6 0.25? 1.1 70 

12 sat, 2 GNSS 12 0.46 US:0.23? 1.5 55 (110) 

12 sat, 4 GNSS 32 <0.25 2.4 >160 
96 sat, 4 GNSS 272 <0.8 6.3 >130 



What could you do if you were to design 
an RO system from scratch? 

Answer:  
• Build an RO system that probes the 22 & 183 

GHz water vapor absorption lines 
 

⇒Active Temperature Ozone and Moisture 
Microwave Spectrometer (ATOMMS) 
⇒ Open air spectrometer 
⇒ Approaching sonde profiling from orbit (but more 

accurate) 

 
 

Kursinski et al., 35 Climate Symposium 2014  Darmstadt MOOG AMS  Oct 15, 2014 



Kursinski et al., 36 IROWG4  04/2 1/2015 MOOG AMS  Oct 15, 2014 

22 & 183 GHz RO Active Spectrometer 
α 

LEO 

H2O 

H2O 

O2 O2 

RO geometry: Transmit & Receive 
         22 GHz            &           183 GHz 

• Profiles speed of light (like GPS RO) & 
attenuation of light (unlike GPS RO) 

⇒Profiles H2O vapor, temperature & pressure 
versus height simultaneously, unlike GPS RO     

       in clear & cloudy air,   over land & water 
⇒ Also cloud LWC, O3, NO2, water isotopes, 

LoS winds above 10 mb & turbulence 
       RO:  Self calibrating, no drift 
 
 

Resolution:     ~100 m vertical, ~50 km horiz. 
H2O vapor:      < 3% precision, < 1% accuracy    
Temperature:  0.4K precision, < 0.05 K accuracy  
 

 

• Will provide unique constraints on  
     turbulent surface fluxes from orbit 

22&183 GHz 
RO 



Differential Absorption to Profile in Clouds 

Mountaintop demonstration results 

• 1st tone on absorption line  
• 2nd calibration tone off the line 
2 tone amplitude ratio eliminates common 

mode noise 
⇒ Enables profiling in clouds & rain 
⇒ Enables profiling of cloud LWC 

Differential Absorption: 2 tones 

Clear Rain 

Red lines indicate +1.2% 
about the fit 

Lose some tone frequencies 
nearer line center during rain  

but still have 
the rest to fit 
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ATOMMS Mountaintop Geometry 
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ATOMMS Latest 
Results 

Mtn-top retrievals 
• In cloud & rain 
• Retrievals up to 

optical depth = 17 
 

Water vapor retrievals 
• Extremely little 

ambiguity 
• Stdev < 1% 
• Ward et al. (2015) 

submitted to GRL 
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IR - GPS RO - ATOMMS Comparison Hyperspectral IR 
• Smooth temperature & water vapor profiles, limited to above the top cloud 

GPS 
• Vertical resolution much higher than IR 
• Ambiguity => can’t directly  separate wet & dry contributions.         Also can’t identify clouds. 

ATOMMS 
• Profiles water vapor & temperature in clear & cloudy  air with 100 m vertical resolution 
• Sees the clouds, at both levels.           Also sees  thru the clouds 
• Measures stability which is critical to dynamics.  (It sees the dry adiabat) 

GPS ATOMMS 

IR: AIRS, IASI, CrIS 
cloud 

cloud 

Profile:  
Barrow, Alaska 
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Extrapolate to ATOMMS for NWP 
• RO system probing near the 22 & 183 GHz H2O lines and 

195 GHz O3 line 
• Simultaneously profiles temperature, geopotential and 

H2O vapor as well as O3, cloud liquid water, cloud ice, rain, 
line of sight winds, turbulence 
 • Requires its own set of 

transmitters & receivers 
• Designed for climate  
• Big impact on NWP with 

sufficiently large number of 
occultations 
• ~40K occ/day w/ 50 sat. 
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Overview of Key Results 
• Strong impact on temperature, geopotential height 

and winds in UTLS as number of occultation increases 
– GNSS RO has strongest impact on Temperature 

• Strong Tropical mid-troposphere water vapor impact 
– Similar to prediction of Kursinski, Healy & Romans (2000) 

• Surprising impact on Tropical mid-tropospheric winds 
• ~1/3 of DFS impact in Troposphere 
• No “saturation” but gradual decrease in impact per 

occultation as # of occultations increases. 
– Particularly large power law exponents in Northern 

Hemisphere and for wind impact 
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Overview of Key Results 
• GNSS RO large impact/$ in general   
• Very large total impact as # of occ increases 
Suggestion: 
• When discussing the impact of GPS RO on the forecasts, 

state that this is the impact for the current sampling 
densities 

• Otherwise, the impression is this is the level of GPS RO 
now (correct) and in the future (which is incorrect) 
 

• ATOMMS has tremendous potential if we can get it into 
orbit 
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