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Outline 
• Background on GPS RO water vapor 
• Moisture histograms & Error estimates 
• Moisture histogram comparisons 

– 346, 547 & 725 hPa 
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GNSS RO Information vs. Altitude 
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temperature vs. alt. 
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What does GNSS RO offer for H2O? 

• Refractivity is sensitive to tropospheric water vapor 
– Bending angle particularly sensitive to water vapor 

• Very high vertical resolution (~200 m) well matched to 
observing vertical scale variations of water vapor 
– Corresponding horizontal resolution is ~70 km 

• Profile thru clouds to observe very wet air in & below clouds 
• Focus on free troposphere 

– Avoid super-refraction problem for now 
 

• Anticipated impact of GPS RO humidity information on NWP 
has not yet materialized 
– Reason: GPS RO sampling very sparse globally thus far 
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GPS RO Features Summary  

• Least biased data set available?  
– Global coverage  
– Diurnal coverage with > 6 satellite constellation like 

COSMIC 
– Works in clear & cloudy conditions (λ ~ 20 cm) 
– Works over land & water (insensitive to surface emissivity) 
– Unique relation between bending angle & refractivity 

(except super-N) insensitive to initial guess 
 

• Vertical range 
– Useful to ~240 K level in troposphere (~9 km alt. at low 

latitudes) (can go colder & higher if doing zonal averages) 
– Extends down very close to surface in extra-tropics 
– If we can deal with super-refraction, profiles can extend 

down to the surface at low latitudes 
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Horizontal Resolution of RO 
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Predicted Impact on Moisture Analyses 
• Local 1DVar estimate based on GPS-MET     (0.3 - 1 = -0.7) 
• Harnich et al. EDA estimate up to 128Kocc/day 
• Background covariances differ 

Fractional Relative Humidity Error Reduction

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1

P
re

s
s
u
re

 (
h
P

a
)

200

300

400

500

600

700

800

900

1000

Tropics

2K

4K

8K

16K

32K

64K

128K

256K

COSMIC2 eq+pol

PlanetiQ

Kursinski et al., 7 IROWG4   Melbourne SSE   Apr 20, 2015 

Kursinski et al. 2002 

Harnisch et al., 2012 
+ extrap to 256K 

Left Panel Right Panel 



GVAP 

• These features have gotten the attention of 
the GEWEX Water Vapor Project (GVAP) 

• Moisture histograms are now endorsed as a 
product for GVAP 

• Heading a histogram group writeup 



Zonal Mean Relative Humidity GPS-MET Jun 21-Jul 4 1995 

• Zonal mean relative humidity from GPS/MET July 1995 

Kursinski & Hajj, 2001 

Winter Summer 

ITCZ subtropics subtropics 

~800 profiles 

SR 



Two Methods for Extracting Water Vapor  
from GPS RO Refractivity Profiles 

1. Direct Method:    Nwet = Ntot – Ndry 
 

– Determine dry refractivity (Ndry) from analysis temperature 
profile and hydrostatic equation 

– Scale Nwet to get water vapor 
 

2. (1D) Variational Method 
– Combine GPS refractivity with  
– Analysis temperature & water vapor profiles and surface 

pressure  
– and error covariance estimates  
⇒ Over-determined, least squares solution 

 

Advantages of Direct Method:  
• Not affected by biases in background water vapor forecast/analysis  
• Can derive water vapor information to higher altitudes 
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Moisture Histograms 

• Low order moments like mean & variance 
provide limited insight into water vapor 
distribution and the hydrological cycle 

• Histograms of moisture on individual pressure 
levels provide much better indication of full 
range of behavior  

• As well as insight into processes at work and 
adequacy of their representation in models 
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Negative q and Error Deconvolution 

Direct Method can and does produce negative q estimates 
   => Produces an unphysical, negative tail in the q histograms 

 

• This can be fixed by deconvolving the error distribution from 
histograms 
– Linearize error model: qmeasured = qtrue + εq 
– Measured histogram (PDF) is then the convolution of the true PDF 

and the error PDF 
   PDFqmeas = PDFqtrue       PDFε 

 

• IF we understand the error PDF, we can then deconvolve it 
from the measured PDF to recover the true PDF 
– Negative tail tells us shape of the error distribution 

 

• Described in Kursinski & Gebhardt (2014) in JTECH 

 

⊗
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Error Deconvolution Low Latitude  

GVAP Workshop Berlin SSE  Apr 20, 2015 
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• Adjust (1) (symmetric) Error PDF  &  (2) “true” q distribution PDF,  
• Convolve them to generate estimate of “measured” PDF, 
• Iterate adjustments until best fit to measured PDF is achieved 

346 hPa 
Full Annual 
Cycle (2007) 

Kursinski & 
Gebhardt, 
2014 JTECH 



Estimating the Accuracy of GPS-derived Water Vapor 

Analogously, the error in relative humidity, U, is  

where L is the latent heat and Bs = a1TP  / a2es.  

σq ~ 0.2 g/kg in mid & upper troposphere.       
σq ~ 0.4 g/kg in lower troposphere 
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• Kursinski et al. 1995: Initial estimate of GPS water profile accuracy  
• Kursinski & Hajj, 2001: Error in specific humidity, q, due to errors in refractivity, N, 

temperature, T, and pressure, P, from GPS 

where C = a1Tmw/a2md  ~ 35 g/kg   
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Separating the Errors 
• Estimate water vapor error from negative tail of distribution (Kursinski 

& Gebhardt, 2014) 
• Resulting errors somewhat smaller than predictions of Kursinski & 

Hajj, 2001 
• In part because low lat. analysis temperature errors are smaller  

  
Specific 

Humidity Error 
(g/kg) 

Fractional 
Refractivity Error 

(%) 

Temperature 
Error (K) 

Reference 
Pressure Error 

(%) 

Pressure 
level (hPa) KH01 Error 

deconv KH01 Error 
deconv KH01 Error 

deconv KH01 Error 
deconv 

346 0.24 0.14 0.2 0.2 1.5K 0.85K 0.3% 0.19% 

547 0.31 0.25 0.5 0.6 1.5K 0.85K 0.3% 0.19% 

725 0.47 0.39 0.9 1 1.5K 0.85K 0.3% 0.19% 



Constraining the GPS RO H2O Vapor Bias 

• 0.01 g/kg wide bins at 347 hPa  =>  Sharp roll-off below 6th positive bin 
• Expected due to coldest detrainment near 200 mb that returns to 

troposphere  (Hartmann et al., 2001) 
• Suggests bias is no more than 0.03 g/kg (Kursinski & Gebhardt 2014) 

Kursinski  et al., 16 IROWG4   Melbourne SSE  Apr 20, 2015 

346 hPa 
Full Annual 
Cycle (2007) 
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Expected Relative Humidity Errors 

Figure shows 
predicted low 
latitude, 1-sigma 
errors vs. altitude & 
relative humidity 
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where L is the latent heat 
and Bs = a1TP  / a2es.  



Relative Humidity Histogram 346 hPa 
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346 hPa  30S-30N   Full Annual Cycle (2007) 

Stdev of error 
tail: 16% (close 
to prediction) 

Narrower error tail above 100% RH vs. 
wider error tail below 0% RH implies  
1 sigma temperature error is 0.8K  

Hint of supersaturation 

Sharp roll-off above 100% 
RH:   Error tail visible on 
low & high ends 



Low Latitude Moisture 
• Convection creates extremes, stretching the H2O vapor 

distribution 
• Mixing & diffusion compress distribution toward its center 
• Specific humidity is conserved in the absence of sources & sinks  

=> tracer 
• Relative humidity important for conversion between vapor & 

condensed phases => clouds & precipitation 
2000 km 

16 km 



MOOG   June 17, 2014 ECMWF/EUMETSAT ROM-SAF Workshop 

547 hPa Specific Humidity Comparisons 

  

ECMWF & NCEP 
analyses don’t like 
really dry air 

General underestimate of  very high 
humidity air except MERRA 

GPS, MERRA & AIRS 
agree well on very 
dry end in mid-
troposphere 

NCEP & AIRS 
overestimate mid-
humidity air 

~5 km altitude, 30S-30N 2007 
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547 hPa Comparison:  CMIP5 models 
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CESM & MPI closer to 
GPS then ECMWF 



Performance Comparison 547 hPa 
To summarize comparisons, use two metrics: 
• X-axis: Sum histogram’s absolute probability differences 
• Y-axis: Std dev of histogram differences vs. GPS 
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0.05 g/kg res. 346 hPa Specific Humidity 30S-30N 2007 

~9km altitude 

• GPS Direct shows highest percentage of very dry air 
• GPS 1DVar strongly influenced by background ECMWF q 
• NCEP differs the most from the rest 

Big difference on dry end, 
GPS RO sees more very 
dry air 
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346 hPa Low Latitude Comparison (2007) 
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Comparison of Estimates of Low 
Latitude Humidity Means 

GPS AIRS v5 ECWMF 
lo-res 

ECMWF 
hi-res MERRA NCEP Sat-Adv 

346 mb 0.44 0.397 0.448 0.448 0.48 0.496 0.456 

547 mb 2.22 2.12 2.29 2.14 2.43 1.98 2.51 

Specific humidity: 30S-30N annual averages 
• Means 

 
 
 

 
• Fractional Differences Relative to GPS RO 
 

 
 
 

• Lots more going on than is captured in the means 
– MERRA histogram shapes closest to GPS but biased high in terms of mean 

GPS AIRS v5 ECWMF 
lo-res 

ECMWF 
hi-res MERRA NCEP Sat-Adv 

346 mb 0.0% -9.1% 2.5% 2.5% 9.0% 13.5% 4.3% 

547 mb 0.0% -4.6% 3.2% -3.6% 9.5% -10.8% 13.1% 
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Sherwood et al. (2014) Reduction in Climate Uncertainty? 

• As climate warms, models indicate stronger mixing => dehydrates BL  
⇒ Reduces low cloud cover  => lowers albedo => more SW absorption 

• Increase in mixing  & dehydration of low-cloud layer in warmer 
climate    proportional to    mixing strength in present climate 

• Evaluated model mixing against “observations” (= MERRA analyses) 

⇒ High climate sensitivity  > 3◦C for CO2 doubling.  
 

IR 



• Model peak q on wet end is a bit small except in MPI 
• Modeled % of wet air near the peak is too high 
• MERRA % too high;  ECMWF slightly too low 
• Models & analyses miss driest subtropical air 

Climate Model & Analysis Comparison  725 mb 

AIRS misses both extremes 



725 hPa Comparison: 30S-30N Wet End 

 

AIRS underestimates wet end 
Climate models overestimate %wet air 
• MIROC 5 is farthest off 
• MPI peaks at right q but % too high 
Analyses 
• MERRA looks like climate model 
• ECMWF slightly underestimates GPS 
• ERA-I very similar to full res ECMWF 



Vertical & Horizontal Resolution Near 725 hPa 

  
IR sounders 

CMIP5 GCMs 

CMIP3 GCMs 

GPS RO 
MERRA 

ECMWF 

NCEP 
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Summary & Conclusions:  GPS 
• GPS RO moisture Information  

– extends to at least 346 hPa at low latitudes 
– Only to ~5 km in winter hemisphere 
– Zonal means can go still higher 
– Low bias: 0.03 g/kg 

• GPS generally sees highest amounts of dry and wet moisture 
extremes of observations, analyses and climate models 
– Exception:  MERRA sees more extremely wet air in mid & upper 

troposphere (must be coming from MERRA model) 
• Initially surprising 

⇒GPS limb sounder has lower horizontal res. than passive sensors 
⇒ More horizontal averaging & smoothing 

⇒ Less ability to see extremes (but clearly false conclusion) 
• Implication:  Very high vert. res., precision & all-weather 

sampling are more important than higher horiz. res. but poorer 
vert. res. & limited cloud penetration 
– NOTE:  Really want both 
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Summary & Conclusions:  GPS 

• Further suggests GPS RO horizontal res. is not as poor as 
we have been stating 
– More like 70 km? 
– Need a study to better determine this 

• The GPS RO information is missing in the moisture analyses 
– Need to dramatically increase GNSS RO occ sampling to have 

more impact on the moisture analyses 
– eventually dominating certain portions of moisture analysis 

information content  
• ATOMMS:  Dynamic range and accuracy will be much 

better than GNSS RO for upper troposphere, winter and 
middle atmosphere water vapor 
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Summary & Conclusions:  AIRS 
AIRS (& passive IR in general?)  
• Dry bias on the wet end of distribution at all tropospheric 

levels 
– Despite cloud clearing 
– IR can’t penetrate into & below clouds where wettest air is  
⇒Sampling bias 

• In mid-troposphere AIRS sees very dry air similar to GPS 
– Good:  Confirms these results 

• Underestimates dry air near BL top  
– Presumably due to limited vertical resolution 

• Biases make it challenging to use IR for climatological 
applications 
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Summary & Conclusions:  Analyses 
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Climate Model Comparison Summary 
• NCAR & MPI are closest to GPS 
• Assessing the realism of climate models is 

challenging & complex.   
– Different figures of merit seem to produce different 

conclusions 
• Biajun Tian found MIROC5 is best in terms of double ITCZ 
• MIROC5 is clearly not best in terms of moisture histograms 
⇒“Right” for the wrong reasons 

– Different figures of merit are good in terms of deeper 
understanding 

– Appears that people working in this area are going to 
be employed for a long time 
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Climate Model Comparison Summary 
• GPS contains unique information about water 

vapor for constraining processes at work climate 
model realism 

• Appears to be critical for characterizing and 
reducing model prediction uncertainty 
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